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ABSTRACT

This report presents final results of the initial phase of the

Weather Satellite Picture Pattern Recognition and Compression Study

(Contract NAS 5-10291). A new and sup'erior pattern discrimination

method was studied. The method utilizes established cloud pattern ref-

erences through a__priori calculation of basic representation vectors.

The vectors are derived from a representative number of cloud patterns

of each class. Once the vectors are established, their characteristics

are held firm rather than updated through more conventional adaptive

procedures.

The pattern discrimination method investigated in this study

offers potential for reducing the time required to assess the information

content of a weather photo through automation of the identification of

cloud classes. The method is equally applicable to implementation at

ground stations or on satellites.
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Section 1

INTRODUCTION

Many attempts have been made to produce methods of re-

ducing the amount of data required to extract useful information from

scenes such as satellite cloud photographs. Pattern recognition tech-

niques functionally imitating the behavior of neurological mechanisms

have been a popular approach to implementing data reduction schemes.

Pattern recognizers must in some way identify and partition all possible

input patterns into mutually exclusive sets of points. Each set of points
must be defined by the class to which patterns represented by the points

of the set belong. In this manner clouds of a particular class will gen-

erally provide a pattern of exclusive and easily discernable points rep-
resentative of that class and no other class. With no a priori informa-

tion on the nature of the classes, it is necessary to base class member-

ship on the given input patterns themselves. Each sample measurement
is a set of numerical values, which may be considered as a vector in a

multi-dimensional space. When the number of dimensions of this space

is high, the number of ways in which the space can be partitioned to pro-

vide low errors on given pattern sets can be considered unlimited. It

is relatively easy to devi_e simple techniques for partitioning the input

vector space of possible patterns into mutually exclusive classes and

provide as low an error as desired in classifying a given set of input

patterns. However, a partitioning which successfully classifies the

given "learning" set of patterns does not often yield a partitioning which

successfully classifies patterns which are not in the initial set. It has

been found that only a small relative number of possible partitions on

the initial set of patterns will produce useful partitions for all possible

patterns.

An approach to pattern recognization which has had some suc-

cess involves a parameterization of the input pattern vector space
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followed by a decision function, often arrived at adaptively, for the

purpose of classifying the input pattern. The decision function is gen-

erally based on a metric, a function which measures the closeness of

a set of stored vectors, one for each pattern class, to the vector which

is the parameterized input pattern. The "closest" vector to the input

pattern parameterization vector identifies the assigned pattern class.

By the methodology of decision theory based on probability density
function values, it is possible to give some measure of the statistical

significance to the resulting classification. This measure is an assigned

value ofa posteriori probability that classification is correct.

The set of decision vectors can be derived on an adaptive

basis, or can be obtained using a "discriminate functional" approach.

In the former case, patterns of known classification are sequentially

introduced to the machine and some method is used to cause the vector

parameterized from the input pattern to selectively reinforce the de-

cision vectors for the given pattern classes. Procedures have been

used to observe the behavior of the decision vectors as additional

"learning" patterns are introduced into the machine. As each deci-

sion vector is seen to approach an asymptotic limit it can be assumed

that the machine has learned as much as it can from the input patterns.

No further improvement in classification accuracy can result, so these

vectors are used in the final choice of pattern class.

In the discriminate functional approach, the "learned" pa-

rameterized vectors are computed rather than arrived at adaptively.

In this approach, a loss function dependent on the frequency of errors

in classification will be used as a basis to determine the vectors which

are later matched with an input parameterized picture. This approach

is the primary concern in this study. The study contains an element

which has not been pursued previously, namely, a structural flexi-

bility in parameterizing the input pattern space and in the decision

functions which should lead to a pattern recognition mechanization with

significantly improved performance over past efforts.
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The main sources of this structural flexibility are the re-

moval of orientation differences by use of a local, gradient-aligned

coordinate system; and the versatility of choice of which subset of de-

cision vectors are selected to utilize those with maximum discrimin-

atory separation of pattern classes.

Previous cloud pattern recognition studies directed at re-

ducing the amount of data required by a user to derive weather trends,

used adaptive machine training procedures. Only limited effectiveness

of the procedures resulted. This was attributed to intermixing of the

pattern classes caused partly by the inaccuracies of the optical meas-

uring procedure and partly by the complexities of the patterns

themselves.

In this study, local small areas containing significant infor-

mation, as revealed by high magnitude gradients, are chosen to reduce

the intermixing of the pattern classes and to enable detection of two

different patterns in different regions of the same large photo.

Results of the study illustrate that the capabilities of the

discriminate functional approach can reduce the time and equipment re-

quired for processing satellite cloud information. The approach ac-

complishes this by computing representations for each class with op-

timum discrimination properties against other classes, using a small

number of measurement values out of the original 105 06or 1 data ele-

ments (each element with typically 32 or 64 gray scale levels) for each

photo. The procedure is directed toward use of a small number of the

most distinctive sets of intensities for the patterns in the weather sat-

ellite data, with simple computations for identification of the pattern

classes present. For these reasons, it has good potential for rapidly

assessing satellite data transmitted to ground stations by directing at-

tention to those frames with interesting features worthy of closer me-

teorological study.

In addition, the method offers potential for use as an on-board

data preprocessor with possible large reduction of the bandwidth required
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for data transmission. This is true because the method characterizes

each pattern type by use of a relatively small number of measure-

ments. Simple calculations identify the particular pattern class. The
initial determination of the best pattern representations requires ap-

preciable machine storage and calculations for numbers of samples of
each class, but this is performed in advance on the ground using suf-

ficient samples to give good class definitions. The calculations are

performed once, with no subsequent changes as in an adaptive

procedure.
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OBJE CTIVES,

Section 2

GROUND RULES AND SCOPE OF STUDY

The objective of this study is to illustrate, using simplified

techniques and advanced analytical results, the picture pattern recog-

nition and data compression capabilities of a novel concept. The con-

cept is based on structuring the choice of features and formation of de-

cision functions, making use of intrinsic pattern properties in satellite

photos. This is in contrast to previous approaches utilizing adaptive

programming to categorize data collections into desired classes. The

foundations and procedures for application of the analytical method are

developed to furnish decision functions. The decision functions are

designed to take favorable advantage of distinctive differences in the

intrinsic statistical properties of the pattern classes.

Under the ground rules of this study, the performance of a

Space-General proprietary approach to the development of a pattern

recognition system was investigated. The application of the approach

to reducing the required quantity of transmitted weather satellite pic-

ture data was a principle ground rule. Also included was the applica-

tion of mathematical techniques which have been utilized before for

pattern recognition problems. Fundamental analytical considerations

were carried through to practical demonstration of pattern recognition

technique s.

At the outset of the study, a hard look was taken at the prob-

lem of categorizing weather satellite pictures. A set of assumptions

were made to assist in providing motivation for a particular functional

mechanization of a pattern recognizer. The following assumptions ap-

peared reasonable:
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a. Pattern information is carried by relatively high
contrast edges.

b. Cloud patterns are statistically independent of a
particular location of the pattern within a picture
frame.

c. Cloud patterns are statistically independent of a
particular rotation of the pattern within a frame.

The first assumption above can have a profound effect on

the mechanization of a pattern recognizer. This assumption leads

naturally to utilization of the gradient of the pattern rather than the

pattern itself. The gradient is here defined in a two-dimensional

sense. The gradient has two important properties. First, its absol-

ute value is large at the pattern edges. Secondly, and perhaps more

important, the gradient is a vector function so that it gives not only

a value but a direction to every point in the pattern. Thus, the gra-

dient provides a local coordinate basis for every point which is inde-
pendent of rotation of the pattern. Utilization of the gradient is an

important basis for the Space-General pattern recognition approach.

The computation of the gradient is a simple matter.

Obviously, the last two assumptions _ould not be true if the

picture were earth-referenced as far as the pattern recognizer is con-

cerned; that is, the patterns are undoubtedly dependent on land masses.

This dependency can have important significance in operational pattern

recognizers since it can become possible to largely eliminate the effects

of sunlight being reflected from the land as a source of confusion in resolv-

ing the clouds and since the formation of cloud patterns is often dependent
on the land masses themselves. However, for simplicity of an initial

approach, it is assumed that no detailed positional information is given

to the pattern recognizer and that (b) and (c) above thereby hold.

The scope of the study was to assess the feasibility and capa-

bilities of the subject pattern recognition approach for the general data
transmission reduction consideration. To satisfy this scope, a series

of tasks were performed. A firm analytical basis for implementing the
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pattern recognition classification process suitable for weather satellite

pictures was performed. A summary of past efforts in adaptive pattern

recognition was prepared. Computing algorithms, required to imple-

ment a computer study of a method of classifying weather satellite pic-

tures, were formulated. Particular emphasis was placed upon utiliza-

tion of results of A. V. Balakrishnan and others in the field of optimiza-

tion of computational methods in control and communication processes.

Other tasks that were performed included: analytical confirmation that

the method of attack provided statistically significant results, detailing

the computational methods, design and testing program, and recom-

mending practical mechanization approaches.

The scope of the study also included the demonstration of the

pattern recognition approach to classify weather satellite pictures. The

demonstration was implemented through a digital computer simulation.

Input data in the form of digitized weather satellite pictures were utilized.
Results of the simulation were included as was the determination of the

efficiency of the adaptive design technique in terms of rate of convergence

of the technique to a final set of transformations under varying conditions.

Conditions included the number of frame elements per picture and the

number of classification elements per frame. In addition, a measure

of the ability of the simulation to generalize from a set of training pic-
tures to a set of pictures not included in the original training set was

part of the scope of the study.
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Section 3

STUDY RESULTS SUMMARY - FEASIBILITY
AND CAPABILITIES

Theoretical analyses supplemented by simplified test pro-

cedures have established the feasibility of the Space-General approach

to weather satellite picture pattern recognition and data compression

in this study. The decision procedure for cloud classification using

fixed sampling sizes within cloud photos and bilevel data, proved sat-

isfactory. The approach investigated in the study also provided widely

separated cloud intensity data thus establishing the availability of dis-
tinctive differences between cloud classes.

The approach accomplishes reduction in the required quan-

tity of data transmission through characterizing each cloud pattern type

using a relatively small number of measurements. The development of

the approach referred to as the simultaneous representation procedure,

has displayed useful properties for automatically distinguishing mem-

bers of different cloud classes. Pre-calculating decision element

weights and holding them fixed rather than successively changing the

weights, such as in an adaptive learning process, proved itself to be
a practical facet of the approach.

Cloud pattern shapes were represented as Fourier-type ex-

pansions in terms of eigenfunctions. Classification results using only

the extreme two eigenvalues, were comparable to cases using complete

sets of eigenvalues; pointing out additional reduction in data processing
beyond that originally expected. The decision procedure formulated in

the study, was shown capable of handling more than two cloud classes

by testing pairs of classes with appropriate quadratic forms to find the

best match for an unknown pattern. Because of the satisfactory results

obtained in this first study, a more comprehensive exploration of the ap-

proach in the second phase will assess capabilities for conditions ap-

proaching operational requirements.
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Section 4

RECOMMENDED FUTURE WORK

The following areas are recommended for detailed study

during the second phase:

a. Determine advantages of using a sampling frame size
adjusted to conform to the size of the individual clouds.

b. Standardize the positioning of the cloud boundary by

centering on the highest gradient point as origin, and

the gradient direction as axis.

C° Demonstrate the benefits derived from averaging and

filtering the original intensity data, or scaling to a

standard range of intensities.

d° Demonstrate the effectiveness of the pattern decision

procedure for general cloud photo intensities using

data preprocessing shown to be advantageous.

e. Establish the sample size of the cloud classes required

for essentially complete learning of the class properties.

f.

.

Include other cloud classes to the extent that adequate

intensity data are available to establish the class

properties.

Determine the best selection of grid subdivisions to

provide good classification within reasonable

calculation time.

h° Determine procedures for selecting optimum subsets

or subregions of the cloud intensities to obtain good

classification with initially reduced volume of data.

i. Establish the extent of data compression possible to

yield suitable cloud pattern recognition, and the oper-

ational possibilities for data compression methods.

the bases for selecting the above areas for the second study phase are

explained as follows.
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The simplified test procedures used throughout the study,
while sufficient to establish feasibility of the approach, require expan-

sion before complete assessment may be made of pattern recognition

and data reduction capabilities and operational compatibility of the ap-

proach. This section outlines additional work required in the second

study phase to assess the capabilities and operational compatibility.
In addition to continuing the task of applying the method to general

cloud photo data, operational applications will be sought during the

second phase. Discussions between potential users and Space-General

will be encouraged by the Goddard Space Flight Center. These discus-
sions will provide operational insight of user requirements. The dis-

cussions also will expose the approach to potential users for their

evaluation.

The analytical development in this report utilized a constant

sampling frame size oriented parallel to the boundary of the sample

photograph. This was a simplification for this phase. Samples of vary-

ing cloud sizes were, therefore, examined within a constant frame size.

This resulted in useful classification of cloud types but improved clas-

sification would be provided if the sample frame size were adjusted to

cloud size. In this manner more uniform cloud-to-sample frame re-

lationships would be established resulting in improved cloud classifica-

tion. The second study phase will, therefore, investigate procedures

for mechanizing sample frame size consistent with cloud dimensions.

The dependence upon magnification or scaling is a problem

in the procedure. If a constant size, local square window is used, then

the results are significant only for features whose extent is comparable
with the window size. By increasing the square size in steps, decisions

can be made about features covering areas of the same order as the area

of the square window. Thus, cloud features covering a specified area

can be sought. It is possible that, by adjusting the frame size to cloud

shapes, some cloud classes would have essentially the same scaled

shapes and autocovariance functions for all frame sizes, while other

cloud classes may be predominantly associated with a certain limited

size range, so that these results would aid in the identification process.
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Sample frame oi_ientation was only adjusted to photo bound-

aries and no automatic procedure was used in this study to orient the

sample frame to a preferred axis related to symmetry axes of the in-

dividual clouds. The second phase of the study will investigate proced-

ures to mechanize adjusting sample frame boundaries to preferred

orientations related to individual cloud shapes. Methods to determine

highest gradient points and maximum gradient orientations of clouds

will also be investigated. These two processes are required to assist

in centering cloud boundaries within frames, and adjusting frame size
and frame orientation for the sample clouds.

The discussion in the proposal (Reference i) considered

using the two-dimensional gradient, representable as a complex num-

ber for each grid point, not only to define interesting regions (high-

gradient magnitudes) and a local coordinate reference based on the

gradient direction, but also suggested computing the autocorrelation

function of the pattern gradient. Although use of the autocorrelation

function of the gradients has advantages in parameterizing the pattern,

the advantages of using the high-contrast edge portions of the pattern

are still largely retained when autocovariance is done on the intensities,

by using regions with high-magnitude gradient and by using the gradient
direction for a local reference. If useful classification can be obtained

with the autocovariance function and resulting eigenfunctions for inten-

sities, this would be preferable to the more complex calculations of

autocovariance of complex number gradients.

The results from the present study have shown encouraging

results using the autocovariance directly on the intensities. However,

the cloud samples were centered visually in the square windows. Use

of the high-gradient values to locate and center the cloud boundaries in

the sampling square would be an automatic procedure to replace center-

ing the entire cloud in the sampling square.

The binary photo representation as studied in this phase will

be expanded in the second phase to include general digital scene data.
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It has been shown (Reference 2) that digitized data benefitted by scaling

to a standard range of intensities, with a 32 gray scale range found

adequate. Also, threefold application of a spatial averaging or filtering

operation was found desirable after first applying the scaling procedure.

The spatial filtering operation, however, leaves the same number of

intensity values as in the original image. In phase two, a further aver-

aging with reduction in the number of data points will be used as neces-

sary to produce the final values. It has been established that use of

every second or every third element was adequate. Even coarser data

may prove sufficient for pattern discrimination. A coarse grid will be

tried first, since a closer description can be achieved, if necessary,

for a given local window size by increasing the grid fineness, with in-

crease of computation time. A simplified estimate of the percent of

cloud cover within a given window can be made by comparing the 25 to

i00 intensity values in each window with a threshold intensity level de-

fining a white or cloud area, so that it is possible to choose a window

size to include a specified range of cloud cover as defined by an in-

tensity threshold.

The results of the present study on simplified photos having

bilevel intensities have demonstrated that the decision functions cal-

culated, using the simultaneous representation eigenvectors as a basis,

resulted in good discrimination between the two classes tested. A dem-

onstration of the pattern recognition capability of the method is needed

for general, multilevel digitized photos, which are the type available

from transmitted satellite data (32 or 64 intensity levels).

It would also be useful to extend the demonstration of the

pattern recognition procedure to include other cloud classes, especially

vortex patterns. The decision procedure operates by selecting the better

pattern match to select one from a pair of candidate classes. The classes

statistical properties have been established during the learning phase

from a substantial number of known members of each class. Thus,

vortices, another cloud pattern class, can readily be included and the

pairwise dichotomy decision process applied to the pairs of classes to
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choose the best matching pattern. It is recommended that the vortex

patterns be included in the second phase study, provided that sufficient

digitized photos of vortices are available from NASA/Goddard.

The present study showed that much the same covariance

matrices, eigenvalues and eigenvectors, and resulting pattern classi-

fications, were obtained either for use of five samples of each class to

estimate the matrices or for use of ten samples. This shows that the

sampling procedure used, centering the clouds in the sampling window

or square with, essentially, uniform directionality, was beneficial in

producing representative statistics for the two classes even with small

sample size for these simplified examples. A like evaluation must be

made of the completeness of learning with various small sample sizes

(25 or 50 or i00) for general, multilevel intensity cloud photo data.

Therefore, it is recommended that the degree of convergence of the

eigenvalues and eigenvectors be established by calculating these for

several sample sizes.

The results in Section 6.3 have shown that selection of the

particular subset of grid elements to be used from the total set, can

sharpen the decision process if grid elements are selected with sharply

contrasting means and/or variances. The contrasting variance then

reflect in producing eigenvalues (ratio of variances for the two classes)

strongly differing from unity, and favoring good class discrimination.

The extent to which this data selection can benefit the class recognition

has to be determined on general digitized cloud photos.

A study is recommended on the trade-off between processing

time and photo information retained. An optimization study of the grid

structure - number and size of cell subdivisions inside the large sam-

pling square - should be made to determine the best fineness of sub-

division. Using more cells increases the detail with which the cloud

(boundaries) can be represented, but lengthens the time for data pro-

cessing and for calculation of the covariance matrices and the eigen-

vectors because these then have a high number of dimensions. Also,

Page 1 3



too fine a subdivision means that the statistical means and variances

within each local cell may fluctuate significantly. The results of Sec-

tion 6.3 are encouraging in that use of the relatively coarse 5 by 5

grid provided useful cloud pattern recognition when the total sampling

square size was compatible with the size of the clouds. The use of

highest gradient points as local coordinate origins and the use of the

gradient direction to define the local orientation of the sampling square

should result in centering the highest contrast edges or cloud bound-

aries in a band across the middle of the sampling square. The inten-

sities in the cells in this band would be expected to be most definitive

of the cloud shape along its boundary, and it is recommended that the

feasibility of classification be determined for the local subset of cells.

At the conclusion of the second phase, a comparison will be

made of the degree of data compression available from the approach

under study relative to the initial quantity of cloud data. The degree

of utility of the pattern recognition and data compression approach

will in this manner, be presented for operational applications. Utility,

defined as combinations of amount of data compression, procedure

implementation complexity, and complexity of integration into existing

satellites, ground stations and communication networks, will be pre-

sented to summarize the capabilities of the approach as derived from

the two study phases.
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Section 5

PRINCIPLE OF THE PATTERN RECOGNITION

PROCEDURE

5.1 BACKGROUND

The approach to mechanizing a pattern recognition proced-

ure and data compressor for use with Nimbus or Tiros weather pictures

is shown in Figure I. The basic approach divides the pattern recogni-

tion task into two functional elements following a sensory input, a param-

eterization element followed by a decision element. It will be assumed

that the input pattern is representable by n sample values (possibly as

large as I00 x I00) each of which is capable of taking on N values

(typically 32 or 64). Thus, any input pattern is representable by an
n

n-dimensional vector, and there are a total of N possible input vec-

tors. As a result of the parameterization, the input vector is trans-

formed into another vector which will be assumed to be m-dimensional

where each coordinate can take on any one of M values. Thus, the N n

possible input vectors are transformed into a space of M m possible

parameterized vectors. To be useful, it is necessary that the number

of possible parameterized vectors be as small a fraction of the number

of possible input vectors as practical. In fact, if a decision is to be

made as to which one of R mutually exclusive classes an input pattern

belongs it is clear that conceptually M m, need only equal R. From

this point of view, the pattern recognition system can be characterized

primarily as a parameterization device. It is clear that the parameter-

ized vectors can be small in number if they provide unique character-

izations of the input pattern classes. Thus, any approach which can

significantly enhance the characterization capability of the parameteri-

zation function will obviously lead to good pattern-recognition mechan-

izations. Implementing good (low generalization error) pattern recogni-

tion mechanizations can be accomplished by systematically determining
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those pattern characteristics which lead to parameters with invariant

values to patterns of a given class.

A good point of departure for this problem is found in sta-

tistical communication theory in the form of the "Karhunen expansions"

theorem (Karhunen-Loeve theorem). This theorem provides a proced-

ure for finding orthonormal expansions, similar to Fourier series ex-

pansions of finite duration, continuous, random signals taken from a

population where the autocorrelation function of the random process is

known. The process need not be stationary. The form of the expansion

for any random signal from the family is:

x(t) Z.i.m. _ _i x.lCOi (t) a < t _ b
-_co i=l

where _a,b_ is the range of the variable t over which the expansion

holds; cPi(t) is the set of orthonormal functions; and !ai21 = k i are

the eigenvalues corresponding to the (eigen-) functions _0i(t) which

satisfy the integral equation:

ib R(t, s) cO(s) ds = k (_(t).

a

R(t, s) is the autocorrelation function for the population. The x. in
1

the expansion are the "Fourier"-type coefficients corresponding to a

particular sample from the population. The significance of this type

of expansion rests on the following:

1[ ,:,1=a. The _c°efficients [xi} are uncorrelated E xix j

i ;_ J/ where ".' denotes the conjugate transpose.

b. The mean square value of x. is unity (E[x.x.,:-_]= 1) so
1 .

that the eigenvalues give a measure of the rletative im-

portance of each of the eigenfunctions (in an average

sense) over the population of random functions.

The first point is significant in that not only are the functions

orthogonal in an analytical sense, but also they are independent in a

statistical sense at least if the source is Gaussian. The second point

is important in that it can be determined from the eigenvalues, in the
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mean, how large a mean square error will be made by including only
a finite number of terms. As will be seen subsequently, a modified

form of the Karhunen expansion was demonstrated to be highly suitable

for class discrimination. Work by Professor A.V. Balakrishnan has

shown that it is possible to determine an eigenfunction set _i' such
that not merely one class or process, but pairs of classes, can be si-

multaneously represented by the common eigenfunction set, with coef-

ficients for both classes made uncorrelated, Property a. above. Prop-

erty b. becomes somewhat modified, inasmuch as the eigenvalues now

measure the relative variances (about the local means) for the two proc-

esses. Section 6.3 shows this to be a highly desirable property of this

simultaneous representation procedure, because use of the eigenvectors
belonging to the most extreme eigenvalues provided quite unique char-

acterization of the pattern classes. Thus a small set of these most dis-

criminating eigenvectors led to good pattern recognition, in accord with

the philosophy of few parameterized vectors as explained at the start of
this section.

5. 2 OUTLINE OF PROCEDURE

The procedure establishes a reference for each cloud pattern

of interest, by use of actual samples of the pattern class by a nonitera-

tive calculation of basic representation vectors. Thereafter, identifi-

cation of new unknown patterns is accomplished by comparison with the

representation vectors. This results in a straightforward technique

which is simpler to use than conventional adaptive procedures. No itera-
tive calculations are required.

In common with other decision methods, the procedure uses a

reduction of the multitude of original weather satellite data. These pa-
rameter values are then introduced into decision elements as shown in

Figure 2, from which the presence of a specified pattern (cloud) class

is indicated if the parameter values result in an output exceeding a pre-

set threshold. The steps investigated in the present study are methods

of determining the parameters by concentrating on distinguishing cloud
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pattern features, and an advanced analytical technique for producing

threshold logic or decision surfaces which give optimal discrimination

between different classes. The weights used in the Decision Element

of Figure 2 are pre-calculated and remain fixed, rather than being suc-

cessively charged during an adaptive lear.ning phase.

The cloud pattern is represented as a Fourier-type expansion

in terms of the eigenfunctions as basic functions; the eigenfunctions

being generalizations of the Fourier series orthogonal sine and cosine

functions. There are many choices of variations which can influence

the adequacy of the resulting eigenfunctions in distinguishing between

classes; these are considered in more detail in Section 5.3 but to clarify

the general approach here, the following is presented.

In the first "learning" phase, patterns of known classification

are used with the specified computer routines to establish pattern classes,

while in the second "recognition" phase, the method is tested by using the

machine or computer to select the classification for new patterns sub-

mitted as input. The phases defined below are for the most general cases.

Application to simplified examples are given in Section 6.0.

a. Learning Phase

(i) For each picture of a single class of input pictures,

complete the following steps:

(a) Compute the gradients of the picture (for a

number of mesh sizes each of which is re-

lated by a factor of 2).

(b) For all points in the picture with absolute

value of the gradient greater than a fixed

threshold, compute the autocorrelation ::=func-

tion locally using the gradient direction of

the point as a coordinate reference. (For

example, compute the autocorrelation func-

tion over a square area of 25 points centered

on each given point. )

#
More generally, the autocovariance function (rather than its normalized

form, the autocorrelation) would be used. The elements of the covari-

ance matrix R are aij = E[(X i -_il(Xi _J)l' the expectedvahe or

mean of the products after removal of the local element means _i and _j.
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(z)

(3)

(4)

(5)

(6)

(7)

(c) Compute the average local correlation func-

tion for the picture. (It may prove desirable

to first test the statistical hypothesis that

each of the autocorrelation functions belong

to a single multivariate(Gaussian) distribu-

tion. If they do not, an algorithm to separate

the functions into separate classes could be

devised. The autocorrelation functions for

each of these derived classes could then be

averaged. )

Average the autocorrelation function for all pic-

tures of a given class. (Subject to the parentheti-

cal statement in (i), (c)). Repeat this procedure

for each class of input pictures.

Compute the eigenfunctions (and corresponding

eigenvalues) for each picture class from the aver-

aged autocorrelation functions (or for each picture

subclass if the autocorrelation functions for a par-

ticular class are statistically separable).

Starting with eigenfunctions with the largest eigen-

values, compute expansion coefficients at each

high-gradient point within the pictures of a single

class. For each eigenfunction used, store the re-

sults in a histogram form; i.e., count the number

of times that the expansion coefficients lie within

each of a number of specific intervals. (The eigen-

functions used should be those which were computed

from all picture classes. )

Repeat (4) for each picture class so that one histo-

gram for each (high eigenvalue) eigenfunction for

each picture class results.

Using the histograms computed for each picture of

the original "learning" set of pictures, determine

the number of eigenfunctions which must be used to

achieve a given proportionate number of classifica-

tion errors. (Note: (5) and (6) might best be com-

bined since one method of ordering the eigenfunc-

tions is their separation capability as measured by

the number of errors each function individually

make s. )

Based on (5) and (6), compute a set of weights for

each eigenfunction which can be used as a measure

of the separating effectiveness for use in the "rec-

ognition" phase.
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b. Recognition Phase

(1) For an input picture to be classified, compute the

gradient.

(2) For all points with gradient magnitudes greater

thana fixed threshold, compute the Fourier coef-

ficients for the eigenfunctions given by the

"learning" process.

(3) Compute histograms for each of the eigenfunction

coefficients.

(4) Match the computed histograms against each of the

stored histograms (and weights) to determine a

most likely categorization for the input picture.

(s) Compute the a posteriori probability (confidence)

of correct picture classification.

It will be noted that no mention has been made of any use of

so-called adaptive techniques in the sense that others have used in the

past. The structure of the machine is computed and not the result of a

trial and error procedure.

It may prove desirable to include adaptation in the system in

a sense somewhat different from previous efforts. Specifically, during

the recognition phase, any input patterns which match poorly with the

reference patterns are isolated. These pictures could be separated by

the user and additional pattern classes generated in a new machine

learning phase.

The approach to pattern discrimination used for the specific

examples in Section 6 followed these steps:

Step 1 - Locate a small window around a local region of the

photo judged likely to contain important features because of

high local gradient values. Section 6.1 shows this for se-

lected example cases.

Step 2 - Select an appropriate resolution and calculate inten-

sities X. for the new resolution elements.
1
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Step 3 - For each of two pattern classes, form autocovariance

matrices using the intensities for M samples of the class with

samples found by (I): The elements of the Class 1 covariance

matrix R, are aij = E [(Xi - bil(Xj- _j]], the expected value
L_ l| /,J

or mean of the products after removal ol the local means, as

given in Section 6. Z.

Step 4 - Obtain the simultaneous representation eigenvectors

@k and eigenvalues X k which satisfy R1 @k = )_k R2 _k' by
-I

evaluation of the inverse R 2 followed by determination of the

eigenvectors for the conventional eigenvalue equation
-i

i_2 R1 Ck = Xk Ck' by use of the Jacobi eigenvalue procedure

-i
for the matrix R 2 R I. Section 6.2 contains results calculated

by this procedure.

Step 5 - Determine the mean and variance of the components

found from the inner product {X, R 1 Ckl of the sample intensity

vectors X with the vector Rl Ck (Class I) or R2 @k (Class 2),

and thereby evaluate the elements of the uncorrelated covari-

ance matrices r I and Y_2 using the largest eigenvalues X k

and corresponding eigenvectors _, see Appendix I. These

matrices are diagonal and of low dimensionality, greatly facil-

itating the subsequent decision process. Section 6.3 gives the

details of calculating _]i and _2"

Step 6 - Establish the adequacy of pattern discrimination for new

samples X using the decision function value X""I_-I -_2-i_ X

f _

- ,,, 21- I -
compared to the threshold level t = log l_l--_-] to decide which

class the unknown matches most closely. The underlying theory

is developed in Appendix I, while the results obtained for spe-
cific cases calculated are shown in Section 6.3.

Use of regions with high absolute value of the gradient will re-

sult in concentration on the relatively high contrast pattern edges, which

delineate the cloud shapes. Also, use of the gradient direction as a local

coordinate basis is important in providing a reference independent of the

rotation of the pattern. The samples selected did not require the calcu-

lation of the gradients to determine the borders or alignment axes, be-

cause the borders were already defined by black-white thresholds, and
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these samples alreadyhada standard preferential alignment as seen in
Figure 3 for the Streets. For general photos, however, the gradient

calculation would be required. The good results obtained when a stand-

ard alignment was chosen supports the prediction that removal of ran-

dom orientation (by use of a local gradient coordinate system) sharpens

the classifications. The results supported the basic assumptions of the

method which were part of the Ground Rules, see Section 2.

Once the points with large absolute value of the gradient have

been located, and the local gradient direction has been determined for
a reference direction, there is stilla latitude of choice of which direct

or derived measurements should be used within the locally aligned

window. The approach of representing picture parameters in terms of

local areas around a point, "neighborhoods," is of crucial significance

in the recognition of weather pictures. The directly available meas-

urements on weather satellite tapes are the digitized intensities on a

64 gray level scale in a fine grid for the entire photo. Hence, the in-
tensities are also available in selected local window subareas. Be-

cause of the direct availability and significance of these intensities,

the first study explored the adequacy of classification methods using the
intensities themselves within each local window. The local autocovari-

ance function was formed and eigenfunctions were obtained to enable
identification of members of different classes. Good results were de-

rived with these local intensities, see Section 6.3

The important concept of simultaneously representing two
different cloud classes by a common eigenfunction set was mentioned

in Section 5.1. The theory justifying this procedure, and showing that

the two classes can both be made uncorrelated thereby, was developed

by Prof. A.V. Balakrishnan, and is outlined in Appendix II. This pro-

cedure was successfully applied in the study. The results in Section 6.2

show the application of this simultaneous representation procedure to

differer, t example cases, while Section 6.3 contains the simplified de-

cision function calculations using the resulting uncorrelated expan-

sions or representations.
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Although appreciable storage and computation is needed ini-

tially in the Learning Phase to calculate the covariance elements using

all the samples and to compute the eigenvectors, once these have been

obtained the calculations are short in the Recognition Phase to test new

patterns for membership in the established classes. Advantages in the

speed for all further recognition processes are shown in Section 6.3

once the more lengthy calculation of eigenvectors had been done using

the furnished known pattern samples. Thus, a relatively simple mech-

anization was possible in the recognition phase.

The chief problem in earlier pattern recognition studies had

been the tendency for overlearning on a limited number of samples,

rather than under-learning. This means that only a few samples were

intensively studied rather than a wide number of samples to obtain the

prime characteristics. In order to take a substantial number of samples

of each pattern class, but avoid overlearning by using closely located

points with substantially overlapping areas for the surrounding win-

dows, the procedure given earlier under (a) Learning Phase, was

modified so that the windows did not overlap. Thus, the different sam-

ples were independent. Absence of overlapping can be assured for square

windows of arbitrary orientation by rejecting cases where the centers of

two squares would be separated by a distance less than the body diagonal

of the square.

Section 6.2 shows that the covariance matrices and eigenvectors

produced when i0 samples of each cloud class were used were quite sim-

ilar to those for only 5 samples. This result means that "learning" had

been substantially achieved even with the smaller sample set. This is

attributed to the use of independent samples, with a standard alignment

(for cloud classes with preferred axis directions), resulting in sharp

class (statistical)properties even with small sample sizes.
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5.3 CASES SELECTED FOR EVALUATION OF PATTERN
RECOGNITION PROCEDURE

The simultaneous representation, maximum eigenvalue pro-

cedure utilizes given measurements for specified pattern classes to ob-

tain an optimum discrimination, and the effectiveness of the method can
be established for the given data.

Pattern classes must be established on the basis of meteor-

ological significance. The function of a pattern recognizer is to cate-

gorize an unknown cloud pattern as belonging to one or other of these
classes. The performance of a cloud pattern recognizer is judged by

its performance in categorizing real cloud patterns into realistic pre-
established classes.

Numerous attempts at cloud classification have been made.

For test of the present system, classification made at Rand by Katz

and Doyle (References Z, and 3), are particularly helpful and a de-
tailed discussion is found in Appendix III. The digitized data used by

Katz and Doyle for two main cloud classes were made available. Other

classifications, particularly vortices, and detection of snow cover on

the ground, are of special interest. It was felt that much of the po-
tential of the method under study could be shown on the Rand cloud data,

along with determination of necessary procedure modifications. Later

application in the next study phase could be made to vortices, snow,
etc., when sufficient sample data can be collected.

The desirability of greatly reducing the amount of data to be

handled for extracting identification of cloud classes from the digitized

photos means that methods which operate on the original intensity data

with relatively direct, simple, and fast calculations are of most interest.

The adequacy of pattern classification using a relatively coarse grid of
values within each local window was established. A 5 x 5 subdivision of

the window would be preferable to a I0 x I0 sub-division because of re-

duced data handling, providing the coarser grid gives adequate classifi-

cation accuracy. The results of Section 6.3 for the simplified examples

studied, demonstrate the suitability of a 5 x 5 sampling grid. The elements
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of the resulting 25 x 25 covariance matrix for the 5 x 5 case are more

adequately estimated for a given number of pattern samples than are

the larger number of elements of the i00 x i00 covariance matrix for

the second case. In fact, the results in Section 6.3 show that the di-

mensionality could be reduced well below the original 25 components

(for the 5 x 5 grid), since good classification was found with selected

sets of 3 to 6 components.

The same motivation of computational simplicity led to di-

rect trial of the intensities themselves, rather than more involved func-

tions of intensity, or covariance of the complex number or two-

dimensional gradient.

The formulation of the decision procedure given in Appendix

I shows that more than two pattern classes can be handled by testing

pairs of classes with the appropriate quadratic (or more generally,

quadric) forms, to find the best match for an unknown pattern. Thus,

initially the study was confined to one pair of classes, since the pro-

cedure can be extended by pairs. The underlying decision theory of

Appendix I shows, however, that an estimate of the a priori frequency

of occurrence of the various pattern classes is necessary to evaluate

the threshold level for decision between pairs. In the present study,

this term drops out by use of equal numbers of the two pattern classes

but uncertainty in these a priori probabilities would increase the classi-

fication errors for general cloud samples.
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Section 6

RESULTS OF THE PROCEDURE APPLIED
TO SIMPLIFIED EXAMPLES

The development of the simultaneous representation proce-

dure explained in Section 5.2 has indicated that theoretically this proce-

dure should have optimum properties for distinguishing members of

different cloud classes. _However, prior to the present work this pro-

cedure had not been applied to actual examples, to test how satisfactor-

ily it could prove in classifying actual cloud patterns.

The ultimate test for the decision procedure would be to sys-
tematically apply it to general cloud photo intensity data, first for

known samples, then for new or unknown cases. The approach for this

work in Phase II has been explained in Section 4. The primary data

available for this complete evaluation are the 66 digitized cloud photos,

for which intensity values are available on a magnetic tape obtained

from Rand Corporation. These samples were used by Katz and Doyle

in their work, References 2 and 3. They gave all photos cloud classifi-

cations, with the main two groups being CUMULUS CELLS and STRATO-

CUMULUS STREETS STRAIGHT. Each digitized photo consists of ap-

proximately 150 x 150 elements of intensity values on a 32 gray level
scale.

Before becoming involved in an extensive computational pro-

gram, using these data, it was decided to work out the computer program
and establish the capabilities of this new approach for classification de-

cision on a small set of cloud photo samples. For this purpose, simpli-

fied examples were run through the complete process involving determi-

nation of the statistical properties of each, in particular: class means,

variances and the covariances (cross-correlation terms); calculation of

the simultaneous representation eigenvector set discussed in Appendix II;

and formation of the class discriminant function for decision, the
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underlying theory in Appendix I. The operations were done first by
hand calculations, following which the steps were programmed for the

IBM 360 and results were checked against the hand calculations. In
this manner, the various steps were verified and occasional difficulties

resolved, as well as obtaining some demonstration of the merit of the

procedure before applying it to the large quantities of the digitized cloud

photo data on the Rand tape. Encouraging results were obtained in test-

ing the class assignments made by the decision theory for the original
and for new cases.

The cases used were the black-white "cloud cover" photos

produced by using an intensity level for clipping of the original (32) gray

levels into two bilevel regions: white or + 1 for "cloud" regions with

high intensities (reflectances), and black or 0 for "noncloud" regions
with intensities less than the threshold. The black-white "cloud cover"

photos used as samples are shown reproduced from RM-3412-NASA as

Figures 4 through 8. The first two photos, frames FR 01 and FR 02,

are for CUMULUS CELLS, while the last three photos, frames FR 63,

FR 64, and FR 50, are examples of STRATOCUMULUS STREETS

STRAIGHT. The CUMULUS CELLS are seen to be generally rounded,

separated clouds, while the STRATOCUMULUS STREETS STRAIGHT

generally are elongated elliptical appearing clouds, with a preferred

orientation for these examples with their long axis running roughly from

upper left to lower right. However, FR 50 is not as distinctive in this
characteristic as are FR 63 and FR 64 for the STRATOCUMULUS

STREETS STRAIGHT. Therefore, FR 50 was held aside as a difficult

new or unknown case, while the covariance matrices were formed using
FR 01 and FR 02, or FR 63 and FR 64, for the two cloud classes.

Although the procedure used to select the cloud samples (in-

tensity values) was simplified, it still retained some of the concepts

which will be tried for the general 64 or 32 gray level photos. Thus,

large squares were used of a uniform size chosen here as i" x i" to in-

clude substantial sized clouds for Figures 4 through 8, and each large
square was subdivided into a finer grid, taken as 5 x 5 for these

Page 30



m

!
|

!

"z

a

!
,e

_E

il-
0
0

o

o

A_

Page 31



d
• • m

8
0

0

.r'-I

C_C_

, 4

_o
O_

D_

N_

o_

r/l

_d
o

m_

,---t
.,-4

_4ca
©

V_

Page 32



%

!
.ii

0J
0
0

o

u']

Do

D_

0_,-_

{j']
_o
0

0

_o

Page 33



z

E

o

!

0

0_
_ca_

_o

©

or-I

_N

I--.I

_a0
or-t

f_
0
0

_,
0'_
0

Page 34



i!

i

0

0

_o

,--4

Page 35



examples, as illustrated in Figure 9. Also, a representative value was

obtained for the overall intensity in each of the 25 grid elements of the

sampling square, as will be done on the digitized 32 gray level photos.

For the simplified cases each of the 25 grid elements was assigned the

value +i whenever more than half of the element area was covered by

cloud, while the value 0 was used for areas with no or slight cloud cover.

An average intensity value will be calculated for the 32 gray level digi-

tized data for each grid element, resulting in a rounded integer from 0

to 31.

Another similarity to the approach for the general multilevel

cloud photos is that the different samples were kept essentially independ-

ent by no significant overlapping of areas. Thus, Figure 4 shows five

selected samples or positions of the sampling square and its associated

grid. The only overlap in Figure 4 was for samples 1 and 2, but this

was over a small area void of clouds.

A significant difference from the general procedure is that the

sampling squares were kept aligned with the frame edges, rather than

aligned along the maximum gradient direction for each sample. The

rather uniform orientation of the STREETS seen in FR 63 and FR 64,

however, means that a standard orientation essentially already exists

for these selected samples so that determination of the maximum gradi-

ent direction is not needed in these particular cases. Also, the samp-

ling squares were centered around individual clouds, rather than being

centered around a high gradient or cloud boundary. Thus, in large part,

individual distinct elements or clouds were taken as the samples. How-

ever, for these distinct clouds, inspection of Figures 4 through 7 leads

to the expectation that characteristic differences between the two cloud

classes should result for the intensities at the 25 grid positions for the

sample squares, and hence, for the covariance matrices of the two

classes or processes. As seen in Figures 4 through 8, five sample

square positions were used for each of the photo frames.

The bilevel intensities found for each of the 25 grid elements

or components of the five samples for each frame are given in Table 1
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for the CUMULUS CELLS samples, _.nd in Table 2 for the best STRAT-
OCUMULUS STREETS STRAIGHT frames FR 63, FR 64. The intensities

for FR 50 are given in Table 3. (See tables at end of Section).

For sample hand calculations to test out the procedure, the
five samples of CUMULUS CELLS from FR 01 were used to calculate

estimated elements of the Glass 1 covariance matrix RI, while the five
samples from FR 63 for the STRATOCUMULUS STREETS STRAIGHT

were used to estimate the elements of the Class 2 covariance matrix R2.
The local means for each of the 25 grid element positions shown on Fig-
ure 9 are also given in Table 4 for the two cloud classes.

Examination of the sample data in Table 4 shows that certain
grid element positions or components of the 25-dimension measurement

sample or vector would not be useful in distinguishing the two simplified

black and white cloud classes. Thus, some components always had 0
• (less than 50% cloud cover) for both cloud classes, so that no useful

measurements occurred in them, as seen for example for components 2,

3, 4, and 5. Other components resulted in the same number of l's and

O's for each of the two cloud classes, so that they would have no differ-

ences either in local mean or in variance for such components although

a secondary effect of differing covariances with other components is still

possible between the two cloud classes. For this reason, components 15

and 18 were rejected.

Additional components were rejected if the samples in either

cloud class had zero variance (all O's or all l's for one cloud class).

This is necessary because the decision test is based on models of two

differing• multidimensional Gaussian processes, each having non-zero

variances for the components, so that a given observed value could be

reached with some non-zero probability by sampling from either process,

with the decision process making a choice of the Gaussian process which

gives the higher probability density function value with the measurement

or sample vector. A zero variance for one component for cloud Class 1

means that component always has a certain value for cloud Glass i. The

zero variance found for some samples can be regarded as occurring
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somewhat by chance with the limited number of known samples used
(5), and also with limited variation of the data due to use of the bilevel

quantization into levels 0 and 1 only. For this reason, component 1

was rejected, because use of additional samples should later give an
estimated variance value other than the value 0 found with the five

CUMULUS CELLS samples from FR 01. Other components rejected
because of zero variance elements for one or both cloud classes were

components 6, 8, 9, Ii, 13, 20, 24, and 25. Later work with i0 sam-

ples for each cloud class enabled use of component 20, which then had

non-zero variances and differing means for both cloud classes, but the

other components, which might have resulted in sharp class discrimi-
nation were still not usable because of this limitation. Such a zero var-

iance in the values for one grid element position would be very rare

with a large number of cloud samples for the 32 gray level digitized
data.

A small set of components remained eligible for use in the
decision test after the exclusions for both classes void (all O's), for

both classes having identical means and variances, and for zero sample

variance for either class. These remaining eligible components (for

matrices based on 5 samples) were components 7, 12, 14, 17, and 19.

However, components 12 and 14 had identical vahies for each of the

five Class 1 (CUMULUS) samples, resulting in identical variances and

covariances. Thus, if both components 12 and 14 were used, the re-

sulting covariance matrix R1 or E 1 for Class 1 has two identical col-

umns, and its determinant I_iI is singular. Because the decision test
involves a constant term

Pl
t = 2 in -- + in

Pz
(i)

a zero determinant for either covariance matrix (R 1 = El, or R 2 = _2 )

causes a singularity, and must be excluded. In order to detect unusual

cases where one determinant is zero, or very much smaller than the

determinant of the other covariance matrix, our IBM computer program

evaluates the determinants of the covariance matrices R 1 and R 2.
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Excluding both components 12 and 14 resulted in the simplest

example tried, the three-dimensional case with components 7, 17, and

19 being used to form the estimated covariance elements for hand calcu-

lations. From these values, the elements of the covariance matrix R1
for the X or Class 1 samples (CUMULUS CELLS) were estimated, after

subtracting the local component means from each measurement, as

aij : E [(Xi-mi) (Xj- mj)] : E (XiXj) - m"m'13 (2)

Thus, the variance of component 7 (m i = mj = m 7 -- 0.4) for Class 1

(CUMULUS CELLS) is calculated to be

02 + 12 + 02 + 12 + 02

(_7, 7 = 5
- (. 4) 2 = • 4 - (.4) 2 = .24 (3)

while the covariance between components 7 and 7 is

a7, iV = (O)(O)+(1)(1)+(O)(1)+(1)(1)+(O)(O)5 - ("4)(. 6) = . 16 (4)

N
This ignores the correction by_ to make an unbiased small sample

estimate of the variance, since it is intended to use a large number of

samples N for the complete process on the 32 gray level digitized

photos, making the correction factor essentially unity.

Table 5 shows the mean vectors M 1 and M 2 for components

7, 17, and 19 for each of the cloud classes, and the elements (_.. of the
ij

covariance matrix estimated using Equation (Z), both for use of only 5

samples, and then for use of i0 samples for each of the cloud classes•

The changes occur because of fluctuations due to the small number of

samples used, but it is encouraging that the covariance matrix values

are rather stable even with these small numbers of samples. Hand cal-

culations were done just with the matrices based on 5 samples (Case A

of Table 6), while computer calculations were done both for this case,

and for estimates based on I0 samples (Case B of Table 6).
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6.1 SIMULTANEOUS REDUCTION AND EIGENVECTOR
CALCULATION

Typical results found from the computer program to deter-

mine the covariance matrices of the two classes, R l and R2, and the
simultaneous representation eigenvector discussed in Appendix II, are

shown in Table 7. The computational procedure follows the flow chart

of Figure l0 except that the filtering and averaging of data is not re-

quired for these simple black-white examples.

The computer run of Table 7 shows first the five input Class
1 (CUMULUS CELLS) three-component sample vectors for FR 01 as

shown in Table 5, followed by the calculated local mean M 1 (compo-

nents m 7 = .4, m17 = .6, m19 = .2), and then the covariance elements
of R1 according to Equation (2). Next are shown the five input Class 2
(STRATO CUMULUS STREETS STRAIGHT) sample vectors, the com-

ponents of the Class 2 mean M2, and the elements of the covariance

matrix R2 for Class 2. The determinant value is shown for ]R21 =
3. 20 x 10 -3 , and the elements of the inverse matrix R 2 i, and later

the check for adequate agreement with

RZ l RZ = I (unity matrix) (5)

In cases where determinant JR21 was virtually zero, say l0 -13 to
-15

10 , a poor check of equation (5) was obtained, but for the case il-

lustrated where RZ is non-singular, a good check is shown.

Then the elements of the product matrix R21RI are shown.

Although both R l and R 2 are symmetric, this is not true in general for
-1

R Z R I. However, an IBM System 360 subroutine (N ROOT) was avail-

able for obtaining eigenvalues and eigenvectors of a matrix product of

-1A,the form B where A and B are real matrices, see Reference i.

The resulting eigenvalues k k, for the simultaneous representation

R1 Ck = kk RICk (6)

after conversion into the conventional eigenvalue equation,
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-i ) = x Ck(Rz R1 k

are shown at the end of the computer run of Table 7,

components of the eigenvector _k

(7)

together with the

normalized to unity:

(s)

(The asterisk means the transpose of vector _k ' and the parenthesis

denotes inner product. ) Essentially, the same eigenvalues were ob-

tained in a hand solution for the roots of the third order characteris-

tic equation of Equation (7), namely, k 1 = 13.006269, k2 = .403033,

and k 3 = . 1907695, and the normalized eigenvectors were also essen-

tially the same, except for reversals of sign on all components of _i

and _3' this is immaterial since the eigenvector only establishes a di-

rection or line in multidimensional space.

The resulting eigenvalues and eigenvectors are summarized

in Table 8. Results are also given when Equation (6) is convertedin-

stead into the form

-i 1

(R1 RZ) -- ®k (9)

where the reciprocals of the eigenvalues k k occur, but with the same

simultaneous representation eigenvectors. As explained earlier, care

was taken to avoid singular covariance matrices R 1 and R2, thus keep-

ing the threshold level t finite in Equation (1), so both Equations (7)

and (9) could be used. The results in Table 8 show that the same

eigenvectors were obtained for Equation (9) as for Equation (7), aside

from the unimportant reversal of sign for all components in a few cases.

Table 8 shows results both for the covariance matrices cal-

culated with 5 samples, and also for the matrices based on l0 samples,

as shown in Table 6. Since the matrix element values changed some-

what when more samples were used, the eigenvalues and eigenvectors

also differ between the two cases. The results in Table 8 show that the

magnitude of the largest eigenvector did not change greatly (13.01 to
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ii. 86), and similarly the eigenvector _i remained roughly the same.

Although the magnitude of the smallest eigenvalue changed from k 3 =
• 19 (5 samples) to k 3 = .46 (i0 samples), Table 8 shows that (aside
from immaterial sign change on all components), the corresponding

eigenvector ¢3 remained much the same. These results are encourag-
ing inasmuch as the eigenvalues farthest from unity correspond to

greatest differences in variances for the two processes, since the

eigenvalue k k equals the ratio of variances for the two classes, see
Appendix II,

k k - , (10)

E[YkZ ]

so that use of these eigenvectors for only the extreme eigenvalues

might give fairly" satisfactory class separation, or accuracy of classi-

fication of unknown samples. Results given in Section 6. 3 confirm the

validity of obtaining good class decisions using only extreme eigenvalues.

The resulting normalized simultaneous representation eigen-

vectors were premultiplied by R 1 or by R 2 to verify that the basic

simultaneous relation of Equation (6) was satisfied for the correspond-

ing eigenvalue kk, and a good check was obtained for each of the kk,

Ck sets of Table 8. In addition, the orthogonality (uncorrelation) rela-

tions were shown to be very closely satisfied for the eigenvectors of

Equation (6):

E xix = (_i ' = 0 (11)

[ ] /4"E yiy j : ", R 2 ) = 0. (12)

Any set of sample values (any measurement vector X) has a repre-

sentation or expansion in terms of the basic functions ¢k of the form

X
P

: _, Yk4)k
k: 1

(13)

Page 44



where the number of components or dimensions is p (thus p = 3 for the

cases of Tables 5 through 8. The variances of the coefficients xk,
which are made uncorrelated by use of the simultaneous representa-

tion method, are calculated using the normalized eigenvectors of

Equation (8) as

x k : E x k = (_ , R 1 _k ) (14)

and

Yk = E = (¢k' RZ _k ) (15)

These results are shown in Table 9, both when 5 samples were used to

estimate R 1 andR2, and when 10 samples were used. The ratio of

these variances for the two classes is seen from Table 9 to equal the

eigenvalue k k, in agreement with Equation (i0).

6. Z FORMULATION OF DECISION FUNCTION AND RESULTS

OF DECISION TESTS

This section presents the results found in classifying the vari-

ous samples using the decision function method of Appendix I.

Table 10 shows the development of the terms needed to form

the class decision function for an unknown vector X. Figures ii and IZ

are flow charts for this calculation. As given in Appendices I and II,

the component x k for a sample vector X with respect to the kth eigen-

vector is calculated as

.I.

(x", R 1 )
xk = .,.-,- (16)

(%, R 1 )

This can be shown from the expansion of Equation (13), where only the

kth component remains because of the orthogonality relations of Equa-

tion (i i).
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Because the simultaneous eigenvalue representation results

in expansion coefficients for different eigenvectors which are uncor-

related, see Equations (ll) and (IZ), the covariance matrices _i (for

coefficients Xk) and _2 (for coefficients yk) are diagonal, with elements

given by Equation (14) for _i' and by Equation (15) for _Z" Conse-
-i -I

quently, the inverses _i and _Z , which enter the decision theory,

are diagonal, with elements I/Xkg and i/Ykg respectively. These

diagonal values are shown at the top of Table 10, SIGMI VECTOR for

-i -i
_i elements. These reciprocal values or diagonal _ elements, are

also seen to be the denominators of Equation (16), for successive com-

ponents x k.

After using Equation (16) to compute the components x k or

zk for a vector X or Z (to be tested for choice of best cloud classifica-

tion), a check calculation is made to ensure that the original vector is

accurately built up from the eigenvector components in agreement with

Equation (13). Table 10 shows (under ZIBAR VECTOR) the compo-

nents of the class l mean vector X or M I, while the Equation (13)

check with these components and the eigenvectors of Tables 7 or 8 is

shown by the CAL. MNI VECTOR to yield again the original _ Simi-

larly for Y and CAL. MNZ VECTOR.

The other calculated quantities can best be understood in

terms of the expression for the decision function Zg(Z). From Appen-

dix I, a decision function 2g(Z) may be calculated, which will be posi-

tive whenever the Class 1 probability density function evaluated for the

multidimensional measurement values Z, is larger than the class Z

probability density function value for the same sample values Z. For

the model of multidimensional Gaussians for each of the two classes,

the expression for the decision function is:

2g(Z) =- (Z-M1)"D1 I(Z-M1)+ (Z-M2)"

+ 21nk
1Z

-1
_'2 (Z-M2)]

)17)
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where

1EzI P1

t = Z ln klg = in _ + Z in -- (18)PZ

Figure IZ shows the formation of the decision function Zg(Z).

The flow chart of Figure ii shows the generation of the threshold level t.

Here Z (and MI) are represented in components with respect to the

simultaneous eigenvectors, found from Equation (16) by replacing X by

Z (or by MI). This results in diagonal covariance matrices _i and _Z

for the two processes (since the components are uncorrelated by Equa-

tions (ll) and (iZ)), thus considerably simplifying the calculation of

Zg(Z). If the probability of occurrence of the two classes are unequal,

Pl
the term In -- occurs, but when equal numbers of samples of the two

PZ

classes are used, this term is zero. The form of Equation (17) for the

decision function shows it to be quadratic in the Z terms after subtrac-

tion of the mean vectors, plus a constant. It is frequently more con-

venient to work with the original sample or measurement vector Z be-

fore subtraction of the means. Expansion of Equation (17) shows that it

can be represented in terms of a quadratic term in Z, a linear term'in

Z, and a constant or threshold level t:

' - 1) * [_1 -Zg(Z) = - z ''_ (D1-1 - I_z z + zz 1 M1

_2 -I M2] + t

(18)

with

Pl
t = Z in -- + in

PZ

IEZ 1 "" 1

_'- - M1 _1 M1

" 1-o

+ MZ _2 M2

The form of Equation (19) is shown in Figure iZ for the computer cal-

culations of the decision function value, after evaluating the constant t
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by Equation (20). Equation (19) shows that only linear terms in Z would

enter if the two classes had identical covariance matrices, but the

quadratic terms in Z for differing variances may dominate when the

two classes have nearly identical mean vectors M 1 and M 2. The decis-

ion is made to put an unknown sample Z into class 1 whenever 2g(Z) is

positive (since then the Bayes rule probability that it came from class 1

is larger than that for class 2) while a negative result 2g(Z) means the

best choice is class 2. The terms of Equations (19) and (20) and the

calculated value t, are shown at the end of Table i0.

A summary of the various cases tried for classification by

the decision function method is shown in Table ii. This table shows

that variations were made in the number of components (grid elements

of the sampling square of Figure 9), and the choice or location of the

grid elements in the 25-celi sampling square. As mentioned earlier,

some cases were done using matrices based on 5 samples though most

used i0 samples of each class, as shown in Table ii. One other im-

portant variation was the number of eigenvectors used in the representa-

tion of any measurement vector (number of terms in the expansion of

Equation (13)), and thus used in the calculation of the decision function.

Balakrishnan's development of the simultaneous representa-

tion procedure shows that all eigenvalues of the joint representation re-

lation, Equation (6), are predicted to be real and non-negative. In

order to obtain useful pattern discrimination from the quadratic terms

of Equations (17) and (19), it is necessary that the variances for the two

classes be quite different. Examination of Equation (i0) shows that this

requires that at least some eigenvectors must be far from unity, since

unity means no variance difference between the two classes. A sum-

mary of the eigenvalues calculated for all the various cases is given in

Table 12. It is seen that the eigenvalues are all real and positive. Also,

the extreme eigenvalues are well separated from unity -- the extreme

values are larger than i0 or less than 0. i in nearly every case. This

finding is significant for reduction of the number of eigenvectors which

are required to obtain good accuracy of classification, sinceeigenvalues
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much different from unity mean that the corresponding components

(eigenvectors) lead to sharp class separation or discrimination, be-

cause the class variances are very different, as seen by Equation (i0).

All original sample vectors Z were first converted to their

uncorrelated coefficients zk with respect to the eigenvector basis by

Equation (16) (with Z in place of X). Then the decision function 2g(Z)

was evaluated by Equation (19), using the uncorrelated coefficients Zk,

following the steps in Figure 12. Intermediate calculations are shown

in Table i0.

The resulting decisions on cloud class are shown in Tables

13 and 14 for various cases of the original known input samples used

to define the individual class means and variances, while Table 15

shows the classifications assigned to the new unknown samples of FR50.

Examination of the results of Tables 13 and 14 revealed that a primary

cause of error in class assignmert was due to a given set of measured

values being observed in both closed classes. These instances are

marked in Tables 13 and 14; thus for Case 2, the class sample vector

X 1 (equal to 0, 0, 0, see data of Table 5) was also found in Class 2 as

the sample vector X 5.

Besides these cases, some other errors in class assign-

ments were for nearly borderline cases, corresponding to relatively low

value of the decision function 2g(Z) (the exact boundary between classes

has 2g(Z) = 0). In order to judge the relative certainty of class assign-

ment, Tables 16 to 18 give the values of the decision function 2g(Z) for

the same cases shown in Tables 13to 15. The calculated threshold

levels t of Equation (i) are listed in Table 19.

In order to illustrate the results for Case 1 of Table ii, in-

termediate details are shown in Tables 20 and 21. First in Table 20 are

shown the terms of the decision function for the five samples from FR01,

CUMULUS . CELLS, and the five samples from FR 63 STRATO-

CUMULUS STREETS STRAIGHT, data in Table 5, which were used to

estimate the elements of the covariance matrices R 1 and R 2 of Table 6,
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Part A. Table 20 shows that correct results were found, except for

Y5 (the fifth sample of FR 63 (No. 5 in Figure 3), whose bilevel values

(0, 0, 0) were identical with those of X 1 (No. 1 in Figure 4), so that
only one of these could be in the right class. The relatively low 2g(Z)

value of . 99 for X l and Y5 shows that these are near the borderline

(2g(Z) = 0). The overall class 1 mean vector Ml, and class 2 mean

vector M 2, were also correctly classified, as shown in Table 20.
This table gives the magnitude of the individual quadratic term -Z_:-"

-i
(_l -I - _2 ) Z, and the linear term in Z, as well as the constant t.

The relative values in Table 2.0 show that the quadratic terms coming

from the differing variances are quite appreciable in most cases, and

often largely determine the choice of class made by the decision

function.

Table 21 shows results obtained for the new unknown STRATO-

CUMULUS STREETS STRAIGHT samples of FR 50, whose data were

taken from Table 3 (for the three components 7, 17, and 19). The

original samples of FR 50 were sometimes not clearcut in their class

types, see Figure 5, so that the assignment of samples 3 and 4 of FR

50 to class 1 (CUMULUS) rather than class 2 (STREETS) was the de-

cision function choice for these samples with use of just the three com-

ponents 7, 17, and 19. The same assignment of all 5 samples of FI<50

was found for considerable variations in the choice of components, both

for use of all eigenvectors or for use of only the two extreme eigen-

vectors, as seen by the results in Table 15. This consistency of clas-

sification for FR 50 samples means that samples 3 and 4 fit better into

the class 1 (CUMULUS CELLS) category, for the sampling patterns

(components) shown in Table i i.

The theory shows that the main contributions to the decision

function due to different variances for the different cloud classes arise

from the eigenvectors whose eigenvalues are most separated from

unity since Equation (10) shows that the greatest differences in vari-

ances then occur. To test the adequacy of pattern classification using

less than the complete set of eigenvectors, the decision function values

shown for Case 2.in Tables 16 to 18 were calculated omitting the
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eigenvector for the middle eigenvalue k 2 = . 403, the eigenvalue clos-
est to unity. Any specified eigenvalues and eigenvectors can be con-

veniently omitted from the covariance matrices E1 and E2, since the

expansion coefficients xk of Equation (13) for cloud class l and Yk for
cloud class 2.have been made uncorrelated in the simultaneous repre-

sentation process, satisfying Equations (ii) and (12). Thus El and _2

are diagonal, and specified elements can be omitted without altering

the remaining variances, which are found independently by Equations

(14) and (15) for those values of k (those eigenvalues) which are re-

tained. The threshold level t in Equation (20) is changed both be-

cause of removal of some of the diagonal terms of E1 and _Z' and

also because of reduction in the number of dimensions (number of ex-

pansion coefficients Xk) retained in representing the class means M 1

and M g. When less than the complete set of eigenvectors is used, the

equality of Equation (13) no longer holds. However, the best decision

for the number of dimensions (number of eigenvectors) retained is still

given by evaluating the decision function of Equation (19) with the re-

maining number of dimensions for the mean vectors M l and MZ, and

for the unknown sample vector Z.

The results in Table 13 and 14 for Case 2 when compared to

Case i, show that nearly as good accuracy of classification was found

with the middle eigenvalue and eigenvector omitted as with the complete

set of three eigenvectors. A change from class 1 to class 2 occurred

for the sample vector (0, 0, 0), which however was observed both as a

member of class l (XI) and also as a class 2 sample Y5 so that an error

had to occur in one of the cases. The relative effectiveness of the de-

cision function can be judged by the magnitude of 2g(Z) for correspond-

ing sample vectors in Tables 16 to 18 - large values of 2g(Z) corres-

pond to high probability of accurate classification. The greatest de-

crease in probable accuracy occurred for the sample Y1 = (i, 0, i) and

its equal Y3' where 2g(Z) decreased from -10. 32 to -2.73 with CZ

omitted. This eigenvector is quite close to the vector (i, 0, 1), sothat

omission of ¢7 gives a poor representation in Equation (13), and more

uncertainty in proper classification for sample vectors such as(l, 0, l).
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Similar results are seen in Case 2 of Table 15 for the five

sample vectors of Frame 50. Comparison of Case 2 to Case 1 Where

all eigenvectors were used, shows that the same classifications re-

sulted, though with lower certainty again for the mean vector M3, and
for samples Zl, Z2, and Z5 because of their near identity with the

omitted eigenvector _g' The decreased certainty is seen by the smaller
2g(Z) values for Case 2 of Table 18 compared to Case i.

Study was also done with the covariance matrix based on i0

samples for each class, values in Part B of Table 6. Here the original

i0 class 1 (CUMULUS) samples X 1 throughXl0 , and the i0 class 2.

(STREETS) samples Y1 through YI0 were evaluated using the eigen-

vectors of Part B, Table 8 for the 10-sample covariance matrices 1<1

and I<2 . Tables 1 3 and 14 for Case 3 show that indeed, the only errors

were for those samples observed in both classes. Thus, good pattern

classification was obtained. The sample vector (i, 0, i) occurred

once as X9, No. 4 of FR 02 among the class 1 samples, but five times

Yl' Y3' Y6' Y7' Y8 among the class 2 samples, and the decision func-

tion placed it always in class 2, accounting for the discrepancy in clas-

sification for sample X 9. Similarly, the vector (0, 0, 0) occurred

both as X 1 in class 1 and Y5' so for one of these, a discrepancy in

classification had to occur-for Y5' called class i. Likewise, the vecto_

(0, l, l) was found once in class 1 as XI0, and once in class 2.as Y2'

accounting for the discrepancy when Xl0 was put into class 2. This ac-

counts for all the discrepancies in classification for Case 3 in Tables

13 and 14, which arose entirely from cases where the same sample

vector was observed in samples from both classes.

The results of applying the decision process, using the three

eigenvectors found for matrices R l and 1<2 based on i0 samples each,

are shown in Table 15, Case 3 for the new samples from F1< 50

(STREETS).

The two samples Z 3 and Z 4 of Case 3, Table 15 were put into

class 1 (CUMULUS CELLS). These samples are seen in FR 50, samples

No. 3 and 4. The broad extent of Z 3 (No. 3, FR 50) is quite dissimilar
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to the thin elongated STREETS samples of Figures 5 and 6. Especially

for the three components used (7, 17, and 19 of Figure 9), where Z 3

had more than 50%, cloud cover (intensity 1), the sample Z3 matched
the round, full CUMULUS CELLS samples of Figures 3 and 4 better than

the thin, elongated STREETS of Figures 5 and 6. Use of the 32-gray
level intensities rather than the bilevel (0, i) values for the simplified

examples could aid considerably in correctly classifying the cloud clas-

ses because Katz and Doyle, Reference 2, found that the bright, white

CUMULUS clouds give many more high intensity values (near 31, white)
than the darker STRATOCUMULUS STREETS clouds.

The other sample of FR 50 put into class i, Z4, was identical
with one of the samples (X5) used to define the class 1 covariance matrix

R l, hence also more similar to the class 1 CUMULUS CELLS. Thus,

the results in Table 15, where samples Z3 and Z4 were put into class 1
under a wide choice of components used and eigenvectors retained, can
be regarded as arising from a mixture of the two cloud classes in FR 50

Figure 7, rather than an error in decision.

Computations were also made to determine the classification

results using a set of six components mentioned earlier as having dis-

tinctive means and variances: components number 7, 14, 17, 18, 19,

and 20, (see Figure 6 for location of these elements or components in
the sampling square). The observed intensities for these elements or

components are shown in Table 22 (Case 4) for the ten class l samples

of FR 01 and 02 and for the ten class 2 samples of FR 63 and 64, while

Table 23 gives the component intensities for the five class 2, FR 50

samples. The covariance matrices R 1 andR 2 were based on i0 sam-

ples each and are shown in Table 24, along with the six computed eigen-

values (ALAM vector) and eigenvectors (PHI MATRIX, with elements

in columns, so that ¢i = 1.416, .414, .727 etc.). Lastly, Table 24 shows

the mean vectors M 1 and M 2.

The resulting class assignments using all six eigenvectors for

the corresponding 6 x 6 covariance matrices R 1 and R 2 are given under

Case 4in Tables 13 and 14 for the two sets of ten sample vectors used
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in estimating R1 and R2. Although there are now no overlaps or
identical samples in both classes, three of the class l sample vectors

were assigned to class 2; no errors were made on the class Z samples.

One of the misclassifications, X 9, was nearly borderline, relatively

small gg(Z) value, but the other two cases, X 1 and X7, were put

strongly into class 2.

Table 15, Case 4, shows the results for the five samples of

FR 50, using the six eigenvectors for the six components used. The

classification results were the same as in Case 3 when only three com-

ponents and eigenvectors were used, so that the class 1 assignments

again appear to be due to considerable similarity of those samples Z 3

and Z 4to CUMULUS cloud types, as discussed above.

In order to determine the possibilities for data compression

in the pattern recognition process, runs were again made omitting

some of the eigenvectors. Indeed, for the six-dimensional component

cases, trials were made using only the two eigenvectors _i and _6

corresponding to the highest and lowest eigenvalues (kl = Zi.94 and

k 6 = .0484), with results shown in Case 5 of Tables 13 and 14. The

results for Case 5, Tables 13 and 14, are quite encouraging for good

recognition using only a few of the main eigenvectors, since virtually

the same results for class assignment were found for Case 5 as for

the earlier Case 4, where all six eigenvectors were used. The only

change in classification was for the near-borderline sample X9, which

is now correctly assigned to class i. Encouraging results were also

found for the FP, 50 new unknown samples of Table 15, Case 4, since

the same class assignments are seen in Table 15 using only the two ex-

treme eigenvalues as were obtained when all six of the eigenvalues and

eigenvectors were included except for the borderline sample, Z 4. Thus,

good pattern recognition properties remain even with the considerably

reduced set of eigenvectors (extreme eigenvalues only).

In a discussion of the preceding results with the NASA/

Goddard personnel for the cloud pattern recognition project, Mr. John

B. Lewis pointed out that it would be interesting to determine the influence
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of choosing other choices or locations of the grid elements or com-

ponents. Accordingly, two other sets of six components were used,

Cases 6 and 9 of Table Ii, to compare with the earlier selection of

the components of Case 4, Table Ii; the intensity values for the sam-
ples were obtained from Tables 1 to 3.

The original set of Case 4 had been selected to obtain the
greatest differences in local means and variances, as estimated from

the intensity values in Tables 1 and Z for the 25 grid elements. The

covariance matrices, eigenvalues, and eigenvectors for Case 4 are

shown in Table 24. Inspection of the calculated eigenvalues in Table iZ

indicates that the six-component set of Case 4 could have superior capa-

bility for data compression in classification using only the extreme

eigenvalues because Case 4 has its highest and lowest eigenvalues the

furthest from unity - best variance contrast in Equation (i0). Cases

6 and 9 are not as good in this characteristic, see Table Ig.

Cases 6 and 9 were found to give somewhat different clas-

sification results than found for Case 4, showing influence of the choice

of grid elements. Thus, Table 13 shows that for Case 4, the first sam-

ple X 1 of FI< 01, Figure 4, was incorrectly put into class 2; the sample

vector is seen in Table gZ or 24 to have been the null vector for the six

components (7, 14, 17, 18, 19, and Z0)of Case 4. In contrast, Table

13 shows that this sample is assigned into class l using the six-component

sets of cases 6 or 9, although it is still the null vector. For Z = 0, the

decision function 2g(Z) of Equation (19) reduces to the threshold value t,

and the t values in Table 19 agree with the resulting classification of

this vector X
i"

Use of the Case 4 components caused 3 classification errors

for the i0 known class 1 samples but no errors on the 10 class 2 sam-

ples, see Tables 13 and 16. For Case 6, there was one error among

the i0 known class 1 samples, and 2 errors in the i0 class g samples.

The Case 9 components resulted in no class 1 errors, but 3 errors

among the i0 class 2 samples. The conclusion is that overall accuracy

was about the same for Cases 4, 6, and 9 with their different selections
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of the particular gid elements used. Improvement in accuracy for one
class resulted in loss in the other class.

Trials were then made using just the two extreme eigenvalues
and eigenvectors for the six components used in Cases 6 and 9. These

cases are 7 and i0 in Table ll. Comparison of Cases 6 and 7 in Tables

13 and 14 shows that use of the two extreme eigenvalues and eigenvectors

removed one classification error of the input class 1 samples (X5), but
four additional errors resulted for the class 2 samples, see Table 14.

Also the borderline FR 50 sample Z4 were now put into class 2, see

Table 15. Comparison of Cases 9 and l0 shows that little loss resulted

by reducing the number of eigenvectors used from 6 to 2, with the only

additional error the assignment of Y8 into class i. Again the FR 50

sample Z 4 was now put into class 2.

In summary, the results with the pairs of cases, use of all

six eigenvectors, or use of only the two extreme eigenvalues and eigen-

vectors - showed that virtually as good results could be obtained in

favorable cases with the two eigenvectors as with the full set. Thus,

Case 5 (two eigenvectors) was nearly as accurate as Case 4 (all six

eigenvectors), and Case i0 is nearly as accurate as Case 9. There was

an important influence though of the choice of which six grid elements

or components were used, because Case 7 (two eigenvectors) had many

more errors than Case 6 using the complete set of six eigenvectors.

For a further test of decision accuracy for a partial set of the

eigenvectors, the classification results were calculated for the six com-

ponents used in Case 6 and in Case 9 of Table ll, but retaining only the

largest eigenvalue k I and corresponding eigenvector _i in the decision

function. These results are shown as Cases 8 and ll of Tables ii to 19.

Comparison of Case 8 to Case 6 in Tables 13 to 15 shows that using only

the maximum eigenvalue and eigenvector in the decision process resulted

in four additional errors among the class 2 samples, Table 14, and the

FR 50 samples Z 4 and Z 5 were given different classifications in Case 8

than Case 6. The use of only the maximum eigenvalue have gave signifi-

cantly poorer classification accuracy than use of all six eigenvectors, but
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the same results as use of the two extreme eigenvalues and eigenvectors,
compare Cases 7 and 8 of Tables 13 to 15.

For the other trial of classification results using just the

maximum eigenvalue or eigenvector, Case ii compared to Case 9 for

all six components, the results in Tables 13 to 15 show one additional

error in the known class 1 samples (X7), which however was the same

as Y2" For the known class 2 samples, three additional classification

errors were made using only one eigenvector, than using all six, see

Table 14, and errors were made on sample Z 2 and on the FR 50 mean

vector M 3, as well as the rather borderline sample Z 4 of FR 50, as

seen in Table 15.

Use of only one eigenvector gave an imperfect representation

of the sample vectors Z and local mean vectors M 1 and M 2 for the two

processes in Equation (17). Use of the maximum eigenvalue would give

the best class separation through variance differences if the two classes

had zero or identical local means, in accord with Equation (10). For

the examples considered the linear terms in the decision functions,

arising from differing local means, were found to be comparable in

magnitude for Cases 8 and ll to the quadratic terms due to variance dif-

ferences, so that imperfect representation of the local means due to use

of only one eigenvector can degrade the classification accuracy. When

two strongly contrasting variance ratios for the largest and smallest

eigenvalues are used, however, the classification accuracy was found

to good in the better cases of Case 5 (compared to Case 4) and Case l0

(compared to Case 9), Tables 13 and 15. Thus considerable reduction

of calculation time has been demonstrated by use of a few of the dominant

simultaneous eigenvectors having a low number of dimensions or com-

ponents, but the ultimate reduction to decision based on only one eigen-

vector may be inadequate unless the cloud class local means are

similar, so that their influence on the pattern choice is slight.

Consideration was given to the effect of evaluating the deter-

minants I_'iIand IZzlof the two (uncorrelated covariance matrices by
2 2

use of all the variances x k and Yk (or equivalently, all six eigenvahes)
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for the threshold level t of Equation (20). These values t are shown

in Table 19, along with the adjusted values for use of only one or two

extreme eigenvalues. Use of the adjusted threshold levels, right col-
umn of Table 19, for the reduced number of eigenvalues was shown to

give quite superior classification results, and is preferable in those

cases where only the extreme eigenvectors might be used and calculated.

The results of Tables 13 to 18 are therefore shown using the deter-
minants and adjusted threshold level for cases where less than the full

set of eigenvectors were used.
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Table 1

BILEVEL INTENSITIES FOR CUMULUS CELLS SAMPLES
(Blank means cloud cover less than 50_)

Grid Element

of Component
Number

1

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Sample Number for FR 01 Sample Number for FR 02

1 2 3 4 5 1 2 3 4 5

1 1 I i i

I i i i 1 I i I I I

i i i i I I i

i I I i i I i i i

i I i i I i I I I

I I I I i I I I

i

I I i i I I i

i I I i I i I I

I I I

I
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Table 2

BILEVEL INTENSITIES FOR STRATOCUMULUS STREETS
STRAIGHT SAMPLES

(Blank means cloud cover less than 50_)

Grid Element

or Component
Number

1 1

2

3

4

5

6 l l 1

7 l 1

8 1

9

I0

ii 1 1

12 1 1

13 1 1

14 1 1

15 1

16

17 1

18 1 1 1

19 1 1 1

20 1 1

Zl

22

23

24 l

25 l

Sample Number for FR 63 Sample Number for FR 64

1 2 3 4 5 l 2 3 4 5

I I I I I I

i I I I I

I i I

i I i I

I i I

1 1

i i I

i 1 i I
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Table 3

BILEVEL INTENSITIES FOR STRATOCUMULUS STREETS
STRAIGHT SAMPLES

(Blank Means Cloud Cover Less Than 50%)

Grid Element

or Component
Number

1
2

3

4

5

6

7
8

9
I0

ii

12

13

14

15

16

17

18

19
20

21

22

23
24

25

Sample Number for FR 50

1 2 3 4 5

i
i i

i i

i

i

I I

1 i

1 I

i

i

1 1

1 1

I 1
i
i

i

i i

i i

i I

i 1

i I
i

i

I I

i i
1
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Table 4

SAMPLES USED FOR ESTIMATION OF COVARIANCE MATRICES

BASED ON FIVE SAMPLES FOR EACH CLOUD CLASS

FR 01, CUMULUS FR63, STREETS

Grid Element Sample Number Sample Number Local
or Component Local

Number 1 2 3 4 5 Mean l g 3 4 5 Mean

1

2

3

4

5

6

7

8

9

10

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1 .Z

0 1 i I 1 1 1.0

1 1 .4 1 1 1 .6

1 1 i 1 1 1.0 1 .Z

1 1 i .6 0

0 l I 1 .6

1 1 1 1 .8 1 l 1 .6

1 l l 1 1 1.0 l i l .6

1 1 l 1 .8 l 1 1 .6

I .Z i .g

.6 i .Z

.6 i 1 1 .6

.Z i 1 1 .6

0 1 i 1 .6

0 i .2

0 i .Z

1 1 1

1 1 1

1
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Table 5

SETS OF THREE-COMPONENT BILEVEL INTENSITY
SAMPLES USED FOR EXAMPLE

CALCULATIONS

Grid Element

or Component
Numb er

FR 01, CUMULUS Local FR 63, STREETS Local

Sample Number Mean Sample Number Mean

1 2 3 4 5 M 1 1 2 3 4 5 M Z

1 1 .4 1 1 1 .6

17 i I i .6 i .2

19 1 .2 1 1 1 .6
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Table 6

ESTIMATED COVARITkNCE MATRICES USING COMPONENTS

7, 17, AND 19. RIFOR CLASS 1 (CUMULUS CELLS)

R 2 FOR CLASS Z (ST_RATOCUMULUS STREETS STRAIGHT)

Means :

Cova riance s :

A. Using the 5 samples from FR 01 for R I.

Using the 5 samples from FR 63 for R 2.

M 1 = (.4,. 6,.2) M 2 = (.6,.2,.6)

16o8)( 2 12o4)= 16 24 12 R 2 = - 12 16 .08
R1 - 08 - 12 16 04 08 .24

Means :

Covariances: R

B•

Using the i0 samples from FR 01 and FR 02 for R I.

Using the I0 samples from FR 63 and FR 64 for R 2.

M 1 = (.5,.7,.3) M z = (.8,. i,.6)

(z505. . ) ( 16 08oz). .

• . -.05 . -. .

= 05 21 11 R 2 = 08 09 04
-.05 -. ii 21 02 .04 .24
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Table 7

TYPICAL COMPUTER CALCULATION OF COVARIANCE

MATRICES R 1 AND R 2, AND
SIMULTANEOUS EIGENVECTORS

VECTCR D IMFfkSICN _ NUMBFR

VErTCR 7 0 ]. 0 ] C

VPCTCR I 7 r [ 1 ] C,

VECT9R 19 C C O O 1

LOCAL MEAK'

_. (_£q9qqSF-Ol

_LT_CCVARIANCE FUkCTICN

VECTCR 7 RCW I* 0.23qggg9

VECTqR 17 ROW 2* O,16nO000

VECTCR lq ROW 3* -0.C79999q

ROW:

ROW:

ROW=

VECTCP

VECTCO

VFCTCR

VECIC_

O_ VECTORS 3 Y--

5.£g999q6E-OI

MnnE C

1.9qggg99E-OI

qETERPINENT=

1 l.OOO000_ OI

2 1.0OOOCC7_ O1

3 -5.COrOelqF OO

rlME_SICN

7 I O

17 0 1

19 ] I

O. I6nOCOC -0.0799999

C.23£g999 -O.IIgngq9

-O. llqgqqg C.16no000

ECCaL MPAN

5.£_gggq6F-ql

?. Ig9_q41E-03 INVEUSE MATRIX

1.000(_007_ gl -_.oCOOOIOF O0

1.7500(TnoE Ol -7._O0001q_ O0

-?,50COCIgE O0 T._OOg01oE CO

NUMBER 0 p VECTnRS 3

I i 0

C n O

] 0 P

AIITCC[VAI_I,_NCE F!J_CT [[IN

I._999999E-01 5,q909996E-Ol

MnnE c

VECTCR 7 PqW 1. C.2_9agqq -O. llqgqq_ C.0400_00

VECT_P I7 _QW 2* -O. []ogq9q C. lSgggq¢ O.OTqqqqQ

VECTCR 19 ROW 3* C,O4OUQOC O. C7q_q9_ O.?)gggqg

UNITY _ATRI_

ROW= ] C.gqgqqq7 B._0COCI0 O.O00nOn2

ROW: 2 -O,CCG_001 0.ggQggq9 0,00_O006

ROW: 3 0.C -_.OCCe0IC o.gggggg6

PRC_UCT M_TRIX = (AINV_R£)* |B)

ROW: [ 4,3qqggq6 _ O0 4.sgqqgg4E CO -?.Tq99qn_F O0

ROW: 2 _,7gGGWR_F O0 6._ggg97Q_ _ -A.CGgggT_F _0

ROW: 3 -2._gggWgCE 0C -3.49qgc_IF Oo 2,4qgqgg0F CO

] FIG_NVAI U_S = 1.30n6131P rl

_.2qR6509E-C[ 7._7_312=F-0| -4.00363QOF-O[

2 FIGFNVALUF£ = 4.O_32_4E-CI

6.28qsO28E-Cl -7.g55O_?_F-C2 7.7374232E-C1

3 FIGPNV AI-UF£ : }'qO76°£4E-Cl

_.5?5=aqSE_Cl _7.27_/R77F-nl -5.1_l_2qZE-01

_g6F-q? SFC 2nl2E-O? £FC

y=

IHCZITI

0.0

0.o
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Table 8

CALCULATED EIGENVALUES _k AND NORMALIZED

EIGENVECTORS Ck FOR SIMULTANEOUS
REPRESENTATION OF TWO CLOUD CLASSES

A.

X1 =

_2 =

=
3

Using R 1 and R 2 values based on 5 samples, Case A of Table 6.

1 II. For (R 2 RI) ¢k = Xk Ck with R 2 = .00320

13.006131 ¢i = (.529865, .747631, -.400364)

.403033 ¢2 = (.628980, -.075551, .773742)

•1907688 ¢3 = (.453559, -.727979, -.514133)

i I I2. For (R 1 R2) Ck ='_k Ck' with R 1
= .00320

1

_LI = k-_ = 5. 241928 ¢3 = (-'45355%'727979' .514133)

_ 1 - 2.481179 ¢2 = ('628980' -.075552, .773742)
_2 _'2

__ i - .07688606 ¢i = (.529865, •747631, -.400364)
/23 k 1

X3 = .463983 ¢3 =

B. Using R 1 and R 2 values based on l0 samples, Case B of Table 6.

1. For (R 2 R1) Ck Xk ¢k' with R 2 = 1.50 x 10 -3

X 1 = 11.8596 ¢1 = (.538373, .807386,-.241421)

X2 = .963367 ¢2 = (.8298.35, -.436600, .347497)

(-.436833, .620769, .782776)
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Table 8 (Continued)

CALCULATED EIGENVALUES kk AND NORMALIZED
EIGENVECTORS @kFOR SIMULTANEOUS

REPRESENTATION OF TWO CLOUD CASES

u 2

_3

-i !
2. For (R 1 RZ) @k = kk Ck' with R 1

1
- 2.155242

k
3

1
- i. 038021

k2

1

kI

•08 9397 3

= 7.50 x i0
-3

_3 = (-.436828, .620768, .782776)

_2 = ('829835' -.436601, .347497)

¢i = (-.538373, -.807385, .241422)

Page 69



Table 9

VARIANCE COMPONENTS FOR UNCORRELATED EXPANSION

COEFFICIENTS (BASED ON EIGENVECTORS

NORMALIZED TO UNITY)

A. Covariance Matrices Using Components 7,

17, and 19, based on 5 samples

Eigenvalue, kk 13. 00613 .403033 . 1907688

Variance E [Xk2 ] .4597225 .1130622 .0606794

Variance E [yk 2] .0353465 .2805286 .3180767

Ratio 13. 00616 .403033 . 1907697

B. Covariance Matrices Using Components 7,

17, and 19, based on i0 samples

Eigenvalue, kk ii.8596 .963367 .463983

2i 320941 205856 103881
Variance E .x k j . • •

[ 2] 0286913 2136829 2238892Variance E Yk " " "

Ratio 11.8599 .963369 .463984
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Table 1 0

CALCULATION OF THE DECISION FUNCTION,
FOR MEAN VEGTOR

SIGpl VECTOR

CQ 8.P4468_F O0 [.64ROC4F 01 _-1

1
S |GM2 VECTOR

2.82ql_4E Ol 3.5645qSF OC 3.1438qSF 90 Z; 1

XRIP VECTOR

2.59e4(:4E-01 4. 108966F-02 -I. ?IC417F-02 (_*, R 1 -¢)

XR2P VFCTOR

fi.6146qTE.-C3 2.323371E-C1 -3._11178E-!)2 (._* R2 ¢)

YRIP VECTI]_

1.99_335E-C2 I.CI9512F-G1 -8.q65qSlE-02 (_*, R1 _)

YR2P VECT()_

1.12C434E-CI 9.__(-3q4qE-c2 -6.6qSln2E-03 ('_*, R2 _)

FOR CASE i

CHI = 0._I¢3948F-02 CH2: C.3IE3qS_E-)2 CH3:

CAL.MNI VECTOR

4.000¢12E-C1 5.gqqq?/F-C1 [.qqqQe?F-91

CAL.MN2 VFCrOR

6.CCCGOSE-CI 2.nc0015_-01 5.qqqqq2E-Ol

71B6R VFCTO_

5.6_78q2E-Cl 3.636252E-C1 -2.818776E-01

Z?SAR VECTqR

2.437212F-O1 8.282117F-CI -I.IC3877F-O1

0.9999900E O0 CH: 0.9g9gq8E O0

(x, R 1 Ck )
E ¢ k ._ = X
k (¢i_' R1 ¢k )

-1
Z1 ={iN1, R 1 ¢)*Z 1

z2 = (MN2, R 2 ¢), z2 I

r _2CHI = _ (i)
i--1

r

CH2 = _ _2 (i)

i=l

r

CH3 = 17 X (i)
i=l

CH = CHI/CH2 = CH3
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CALCULATION OF THE DECISION FUNCTION, FOR CASE 1
FOR MEAN VECTOR (Continued)

SIMI VECTOR

1.22_5_2E O_ 3.?143R2E O0 -_.645350F O0

SIM2 VECTOR E2 I M2

6._qSI(igE 0£ 2,q52324F 0C -3.47C414F-")[

MI* Zl-I M I = AMSI= 3.171473E 00 A_S2=Mz* Z2-1 MZ=4.163963E 00

CH4= 3. 171473E 00 CH5= 4. 163963E O0

LEG(CH]I= -1.CC136_E-05

SI_S2 VECTOR (EI-I

-2.51161Ck Ol 5.279990F 0O

AMS2 VECTOR

-5.666656F C0 2,6205P3E-CI

l= 9.924RI2E-OI

FLAGI: [,C_OCCCE 0C

Z VECTOR

4.COCCCC_-CI 6.COOOCCE-OI

ZRIP VECTOR

2.59646_E-CI 4.10RqE6E-02

IR2P VECTOR

1.9q(335E-C2 1.C19512F-01

ZI VFCTOR

5.6478q6E-01 3.634253F-0!

ISQ VECTOR

3.1_q871E-CI 1.32_779E-01

CAL. MNZ VECTqR

4.00CCI_.E.-01 5.qOC98LF-01

Z1MST: -3.787268E OO

ZSQSI: -6.5737C6E 0C

G21 = 3.?78qlSE OC

-_.2_8_C3E O0

2.CCCOCCF-OI M I

-1.710417E-O2

-_,9_5951E-02

Z

-2.818776E-01

7. q45t, q6E-02

1,9_ (_qRfl F-OI

2 Z* (El-1 M1 _ 212-1 M2 )

.z 2 1)Z* Z (E l-I

2 g (Z)

-1

Z 1

-I

Z 1 M I E2 -I M 2

Zi = Z RIP/XBAR2

(z_) 2

2. (Zl * AMS2) VECTOR

Z SQI * SIMS2

2G(Z)
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Table 11

SUMMARY OF CASES USED FOR TEST OF PATTERN

CLASSIFICATION PROCEDURE

Case

Number

1

2

8

9

i0

ii

Components
Used

7,17,19

Same as 1

Same as 1

7, 14, 17,

18, 19, 20

Same as 4

Same as 6

Same as 6

7, 12, 14,

15, 17, 20

Same as 9

Same as 9

Number of Samples
Used to Estimate

Matrice s

5

5

i0

I0

i0

I0

i0

i0

i0

i0

i0

Eigenvector s
Used in Deci-

sion Function

All 3

Largest (Xl) and

Smallest (X3)

All 3

All 6

Largest (XI) and

Smallest (k6)

All 6

Largest (kl) and

Smallest (X6)

Largest (),I)

All 6

Largest (X1) and

Smallest (X 6)

Largest (kl)
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Table 12

SUMMARY OF EIGENVALUES CALCULATED
FOR VARIOUS CASES

Case

1

2

3

4

5

7

8

10

11

Case Description

3 components using

all eigenvectors

(matrices based on 5

samples)

Same as case 1,

omitting >'2

Same as I, but based

on i0 samples

6 components using all

eigenvector s (matrices

based on I0 samples)

Same as 4, using only

X 1 and X 6

Sa.me as 4, but differ-

ent set of 6 components

Same as 5, but differ-

ent set of 6 components

Same as 6, but using

only 1

Same as 4 and 6, but

new set of 6 components

Same as 5 and 7, for

new set

Same as 8, for new set

Components Used

7, 17, 19

7, 17, 19

7, 17, 19

7, 14, 17, 18, 19, Z0

7, 14, 17, 18, 19, 20

7, 12, 14, 17, 18, 20

7, 12, 14, 17, 18, 20

7, iZ, 14, 17, 18, Z0

7, 12, 14, 15, 17, 20

7, 12, 14, 15, 17, 20

7, 12, 14, 15, 17, 20

Eigenvalues

13.0, 0.40,

0.19

13.0, 0.19

11.9, 0.96,

0.46

21.9,1.5,

i. i0, 0.38,

0. 21, 0. 0484

21.9, 0.0484

11.3, 1.5,

0.66, 0.23,

0.21, 0.088

ii.3, 0.088

11.3

ii.0, 1.57,

0.71, 0.58,

0.20, O. 126

ii.0, 0.126

ii.0
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Table 13

CLASSIFICATION FOUND FOR VARIOUS CASES

FOR THE KNOWN INPUT SAMPLES OF CLASS 1

1 - Class 1 (CUMULUS CELLS) 2 - Class 2 - (STRATOCUMULUS

STREETS STRAIGHT)
Samples from FR 01, 0Z (CUMULUS, Class I)

Case

No. 1 2 3 4 5 6 7 8 9 l0 ii

Sample Number of

Vector Eigenvector : 3 2 3

X 1 1 2 1

(=Y5)

X 2 1 1 1

X 3 1 1 1

X 4 1 1 1

X 5 1 1 1

X 6 Not 1
Included

X 7 Not 1
Included

X 8 Not 1
Included

X 9 Not 2

Included (=Y1)

Xl 0 Not 2

Included (=Y2)

M 2, mean 1 1 1

6 2 6 Z 1 6 2 1

Class Decision

2 2 1 1 1 1 1 1

I I I I i I I I

I i i I I I I 1

I I i I I I I i

I I 2 i I i I i

I i i i I I I I

2 2 I i I I I 2

1 l 1 1 1 1 1 1

2 1 1 l 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
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Table 14

CLASSIFICATION FOUND FOR VARIOUS CASES

FOR THE KNOWN INPUT SAMPLES OF CLASS 2

1 - Class 1 (CUMULUS CELLS) 2 - Class 2 (STRATOCUMULUS

STREETS STRAIGHT )

Samples from FR 63, 64 (STREETS, Class 2)

Case

No. 1 2 3 4 5 6 7 8 9 10 11

Sample Number of

Vector Eigenvector s: 3 2 3 6 2 6 2 1 6 2 1

Class Decision

Y1 2 2 2 2 2 2 1 1 2 2 l

Y2 2 2 2 2 2 1 1 1 1 l 2

(=X 7) (=X 7) (=X 7) (=X 7)

Y3 2 2 2 2 2 2 1 1 2 2 2

Y4 2 2 2 2 2 2 2 2 1 1 1

(:x9)

X 5 1 2 1 2 Z 1 1 1 1 1 1

{:xI) {:xi)

X 6 Not 2 2 2 2 2 2 2 2 2
Included

X 7 Not 2 2 2 2 1 1 2 2 l
Included

X 8 Not 2 2 2 2 1 1 2 1 1
Included

X 9 Not 2 2 2 2 2 2 2 2 2
Included

X Not 2 2 2 2 2 2 2 2 2

10 Included

M2, mean Z 2 2 2 2 2 2 2 2 2 2
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Table 15

CLASSIFICATION FOUND FOR VARIOUS CASES FOR
NEW UNKNOWN SAMPLES. SAMPLES FROM FR50

(Predominantly STREETS, Class 2}

Sample
Vector

Z I

Case No.: 1 2 3 4 5 6 7 8 9 i0 ii

Number of 3 2 3 6 2 6 2 I 6 2 1
Eigenvector s Used:

Class Decision

2 2 2 2 2 2 2 2 2 2 2

Z 2 2 2 2 2 2 2 2 2 2 2 1

Z 3 I I I I I i I i I I I

Z 4

Z 5

I I I I 2 i 2 2 I 2 2

(=X 5 )

2 2 2 2 2 2 i l 2 2 2

M 3 Mean 2 2 2 2 2 2 2 2 2 2 1
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Table 16

SUMI_F_kRYOF DECISION FUNCTION VALUES 2g(Z)
CALCULATED FOR THE KNOWN INPUT

SAMPLE VECTORS OF CI_kSS i

Ca se

No.

l

Sample Vector: X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 XI0 M 1

Case Description

3 Components, using

all 3 eigenvectors

(Matrices based on

5 sample s)

1.0 28.9 5.1 28.9 9.0 Not Done _ 3.8

Same as Case I, but

using only X 1 and k 3

eigenvector s

-I •2 28. 2 3.0 28. 2 9.3 Not Done ., 2. 1

Same as Case I, but

matrices based on

I0 samples

0.8 36.2 11.6 36.2 13.4 36.2 11.6 36.2 -6.1 -2.7 5.7

6 Components, using

all 6 eigenvectors.

Matrices for i0

sample s.

-111.7 110.7 62.5 110.7 22.4 110.7 -40.8 110.7 -6.2 3.7 36.8

Same as 4, but using -8.8

only k I and sX6
eigenvector .

95.4 37.4 95.4 17.6 95.4 -15.5 95.4 2.9 Ii.0 23.

Same as 4, but dif-

ferent set of 6

component s

46.4 148. 61.2 148. -3.5 148. i8.7 148. 29.4 55.7 41.1

Same as 5, but dif-

ferent set of 6

component s.

73.1 138.2 47.4 138.2 4.1 138.2 19.0 138.2 26.5 42.7 31.8

Same as 6, but using 78.5 135.9 45.6 135.9 13.6 135.9 16.4 135.9 23.9 53.6 29.3

only X 1

Same as 4 and 6, but

new set of 6

components

27.1 91.4 23.8 85.4 9.1 71.4 4.6 71.4 3.5 18.6 19.3

Same as 5 and 7 for 36.2 65.9 13.5 81.1 2.8 65.9 .01 65.9 4.2 6.4 13.

new set

Same as 8 for new 39.4 63.3 11.5 83. 1 0.3 63.3 -1.3 63.3 1.6 16.7 10.4

set

Vectors X are from Class 1 (CUMULUS CELLS) Samples

Positive 2g(Z) means most probable choice is Class i (CUMULUS)

Negative 2g(Z) means most probable choice is Class 2 (STREETS)
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SUMMARY OF DECISION FUNCTION VALUES 2g(Z)
CALCULATED FOR THE KNOWN INPUT

SAMPLE VECTORS OF CLASS Z

Sample Vector: Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 M2

Case

No. Case Description

I.

2.

3.

4.

3 Components, using

all 3 eigenvectors

(Matrices based on

5 samples)

Same as Case I, but

using only _I and k 3

eigenvector

Same as i, but ma-

trices based on

I0 samples

6 Components, using

all 6 eignevectors.

Matrices for 10

samples

Same as 4, but using

only k I and k 6

eigenvector

-10,3 -10.5 -10.3 -7.2 1.0 Not Done t -2.6

-2.7 -10.8 -2.7 -7.3 -1.2 Not Done ,_ -1.6

-6.1 -2.7 -I.2 0.8 -6.1 -6.1 -6.1 -6.1 -1.2 -1.2 -4.0

-93.7 -161.6 -93.7 -150.7 -331.7 -110.8 -228.1 -30.8 -403.5 -150.7 -79.2

-72.4 -135.2 -72.4 -143.3 -136.5 -19.1 -203.1 -7.6 -238.5 -143.3 -52.5

6. Same as 4, but dif- -9. +18.7 -48. -36.1 19.3 -114. -9. -25.1 -58. -58.8 -24.7

feren£ set of 6

components

7. Same as 5, but dif- 12. I 19.0 4.0 -17.8 68.5 -84.8 12.1 10.7 -4.7 -9.2 -4.5

ferent set of 6

components

8. Same as 6, but 30.1 16.4 7.7 -5.4 68.9 -3.1 30.1 14.1 -4.1 -1.7 -5.2

using only kl

9. Same as 4 and 6, but -53.8 4.6 -43.4 3.5 6.0 -54.3 -27.7 -16.5 -74.3 -32.1 -18.5

new set of 6

components

i0. Same as 5 and 1 for -31.3 .01 -0.9 4.2 30.4 -41.0 -12.2 0.5 -24.4 -15.6 -5.2

new set

11. Same as 8, for new 12.6 -1.3 -3.2 1.6 31.6 -3.4 4.8 1.5 -3.4 -3.7 -3.6

set

Vectors y are from Class 2 (CUMULUS CELLS) samples. Positive Zg (Z) means most probable choice is

Class 1 (CUMULUS); negative 2g (Z) means most probable choice is Class 2 (STREETS)
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Table 1 8

SUMMARY OF DECISION FUNCTION VALUES 2g(Z)

CALCULATED FOR THE INPUT

SAMPLE VECTORS OF FR 50

Case

No.

4 -236.2 -228. 1

5 -203.1

6 -114.2 -112.5

8

9

i0

II

Sample Vector: Z 1 Z 2 Z 3 Z 4 Z5 M3

Case Description

3 Components, using all 3 -I0.3 -i0.3 2.2 9. l -10.3 -6.7

eigenvectors (matrices based

on 5 samples)

Same as case I, but using -2.7 -2.7 8.5 9.3 -2.7 -1.2

only Xl and X 3 eigenvectors

Same as I, but matrices -6.1 -6. I 4.5 13.4 -6. 1 -5.2

based on I0 sampled

6 components, using all 6 14. 6 7. 9 -84.4
eigenvectors. Matrices for

i0 samples

Same as 4, but using only _I -92. 1 31. 3 -. 17 -92. 1 -49.5

and _6 eigenvectors

Same as 4, but different set 132.6 8. 1 -62 -38.8
of 6 components

Same as 5, but fifferent set -84.8 -73.2 135. 1 -2.6 +7.7 -21.8
of 6 components

Same as 6, but using only X1 -3. 1 -4.7 148.9 -5.0 9.6 -2. 6

Same as 4 and 6, but new -54.3 -53.8 48.7 0.3 -74.3 -34.8

set of 6 components

Same as 5 and 7, for new set -41.0 -32.3 54.5 -5.2 -25.4 -22.2

Same as 8, for new set -3.4 12. 6 95. 1 -2. 9 -3.4 3. 2

-236.2

Vectors Z are from Frame 50, Class 2 (STREETS) samples. Positive 2g (Z) means

most probable choice is Class 1 (CUMULUS) negative 2g (Z) means most probable
choice is Class 2 (STREETS)
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Table 19

SUMMARY OF THRESHOLD LEVEL VALUES OF t

Case

No.

2

3

4

6

8

9

i0

ii

Case Description

3 components, using all 3

eigenvector s (matrices

based on 5 samples)

Same as case i, but using

only k I and k 3 eigenvectors

Same as i, but matrices

based on i0 samples

6 components, using all 6

eigenvector s. Matrices

for i0 samples

Same as 4, but using only

X 1 and X6 eigenvectors

Same as 4, but different

set of 6 components

Same as 5, but different

set of 6 components

Same as 6, but using only

1

Same as 4 and 6, but new

set of 6 components

Same as 5 and 7 for new set

Same as 8, for new set

Threshold

Level t

(Using all

Eigenvalue s )

0.99

0.79

-111.67

-6.79

46.44

76. 18

83.99

27.09

38. Z9

43.54

Adjusted With
Reduced

Set of

Eigenvalue s

-i. 19

-8.80

73. 13

78.52

36.24

39.41
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Table 20

CASE 1 DECISION FUNCTION USING COMPONENTS 7,
17, AND 19 FOR KNOWN CASES

Quadratic Linear

Sample Vector Term Term Total Zg (Z) Decision
From FR Ol Q L Q+L+t Class

M 1 : (.4, .6, .2) 6.57 -3.79 3.78 1

X 1 = (0, 0, 0) 0 0 .99 I

X z = (i, i, 0) 41. 16 -13.28 28.88 1

X 3 = (0, i, 0) 6. 08 -Z.0Z 5.06 1

X 4 = X 2 Z8.88 I

X 5 = (0, 0, i) -1.58 9. 64 9. 05 1

From FR 63

M Z : (.6, . Z, . 6) -Z. Z3 -1.38 -2.62 2

YI : (i, 0, i) -9. 68 -i. 63 -i0.32 2

Y = (0, i, i) -19. 08 7. 6Z -i0.46 Z
Z

y = y -10. 32 2
3 1

Y4 : (i, 0, 0) 3.09 -ll. Z6 -7. 18 Z

Y5 = (0, 0, 0) = X 1 0 0 .99 1

Covariance matrices based on 5 samples. Results shown for all the

original known samples of FR 01 and FR 63.

Threshold levelt : .99
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Table Z1

CASE 1 DECISION FUNCTION USING COMPONENTS 7,

17, AND 19, NEW UNKNOWN CASES

Sample Vector
From FR 50

M3 = (.8, .Z, i)

z I (i, o, i)=Yi

z z(1, o, i)--Yi

z 3 (i, i, i)

Z 4 (0, O, i) = X 5

Z 5 (i, O, I) - Y1

Quadratic Linear

Term Term Total Zg (Z) Decision

Q L Q+Z+t Class

-7. 91 0. Z23 -6.7 Z

-9. 69 -1.63 -i0.32 Z

-9. 69 -1.63 -i0.32 Z

4.81 -3. 64 Z. 17 1

-l. 58 9. 63 9. 05 1

-9. 69 -1.63 -i0.32 2

Covariance matrices based on five samples. Results shown for new

unknown samples of FR 50.

M 3 = AMN3 = .8, .Z,

Threshold Levelt = .99

.i Mean for frame 50
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Table Z2

CASE 4 BILEVEL INTENSITIES FOR KNOWN SAMPLES

(Samples X 1 - X 5 FR 01; X 6 - Xl0 FR 02

Y1 - Y5 FR 63; Y6 - YI0 FR 64

Grid Element of

Component Number :

7 14 17 18 19 20

Sample Number

X 1 0 0 0 0 0 0

X 2 1 1 1 1 0 0

X 3 0 1 1 1 0 0

X 4 :X 2 1 1 1 1 0 0

X 5 0 1 0 0 1 0

X 6 : X 2 I 1 i 1 0 0

X 7 0 0 i I 0 0

X 8 : X 2 1 1 i I 0 0

X 9 I 1 0 1 1 0

Xl0 0 1 1 1 1 i

Mean M 1 0.5 0.8 0.7 0.8 0.3 0.i

Y1 1 1 0 1 1 1

Y2 0 0 1 1 1 0

Y3 =YI 1 1 0 1 1 1

Y4 1 1 0 0 0 0

Y5 0 0 0 0 0 1

Y6 1 0 0 1 1 1

Y7 1 1 0 0 1 1

Y8 1 0 0 1 1 0

Y9 1 0 0 0 0 1

Y1 0 = Y4 1 1 0 0 0 0

Mean M 2 0.8 0.5 0. i 0.5 0.6 0.6

Sets of Six-Component Bilevel Intensity Samples used for

Example Calculations. Knowns - FR 01, 02, 63, 64,
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Table 23

CASE 4 BILEVEL INTENSITIES FOR UNKNOWN

SAMPLES OF FR 50

Component Number: 7 14 17 18 19 20

Mean, M 3

Sample Number 0.8 0.6 0. Z 0.4 i. 0 0.8

Z 1 1 1 0 0 1 l

Z 2 1 1 0 0 1 1

Z 3 1 1 1 1 1 1

Z 4 0 I 0 1 i 0

Z 5 1 0 0 0 1 1

Set of Six-Component Bilevel Intensity Samples From FR50,

Used as New Unknowns or Test Cases
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Table 24

CALCULATED COVARIANCE MATRICES R1 AND R2,
EIGENVALUES, AND EIGENVECTORS FOR GASE 4

kOW= l

ROW.= 2

ROW= 3

ROW- 4

ROW= fi

WuW = 6

ROW', I

ROW= 2

ROW= 3

ROW- 4

I_OW= fi

I_OW= 6

_OW,, I

ROW= 2

i_0 k = 3

MOW= 4

ROW= 5

ROW- 6

CHECK CASE 26 VECTORS 17114e17,lE,1Se20) OIN " 10

N" 6

R| NATRIX

2,SGOOOOE-OI 9,_ggg_eE-C2 §.0OOUOOE-02 9.999996E-02 -5,000000E-02 -5,000000E-02

_,Sggq96E-O2 1.60COOOE-CI 4.000000E-02 6.000000E-02 6°000000E-02 2.000000E-02

5,COC000E-02 4,CCCCOOE-02 2.100000E-01 1.400000E-OI -I.IO00OOE-OI 3,000000E-02

S,Sggq96E-02 6,CCCCOCE-C2 1,6CO000E-O| 1,600000E-01 -4,000OOOE-G2 2.000000E-02

-5,OCO00CE-OZ 6,00C000E-C2 -I.ICO000E-OI -4.000000E-02 2.100000E-01 6°?S9999E-02

-5,QCCCCOE-OZ 2,COCOOOE-C2 3.CCOO00E-C2 2.000000E-02 6.eg?eg?E-O2 8.999egTE-02

R2 MATRIX

Io60CO00E-OI ?.qggqgbE-02 -7.997978E-02 0,0 2.000000E-02 2.000000E-02

S°_99996E-OZ 2°§00000E-01 -5,000000E-02 -5.000000E-02 0,0 0.0

-7.Sg_ggEE-O2 -5.GOCOOOE-C2 8.99qqSTE-O2 5o000000E-02 4.0C0000E-02 -6.000000E-02

O.O -5.CCCOOQE-C2 5,CGOOOCE-02 2.500000E-01 2.000000E-OI 0°0

2.C0000CE-02 0°0 4.O000OOE-C2 2.OQO000E-OI 2.399_ggE-OI 4.000000E-02

2,CO00OOE-O2 0.0 -6.CCO00CE-O2 0°0 6oOCOOGOE-O2 2.39_999E-61

CHECK CASE 2b VECTORS (Tel4elTtlBelS_20| DiM = lO l 05124167

ALAN VECTOR

2.193956E Ol

PHI MATRIX

4.158298E-01

4.13;442E-02

T.2728gOE-OL

2.4TO689E-CI

-4°331072E-01

2.186244E-O|

APh| VECTOR

1.509345E OG 1.OgSbgSE OO 3.8462COE-01 2.113585E-01 4°843067E-02

6.047664E-01 5.3S36T?E-G1 3.b575|TE-01 5°289782E-02 4.66552[E-02

-4.304039E-01 I,l_l186E-01 -4.1662TqE-01 -3.627348E-01 -2,620336E-01

-4.861668E-01 3.725154E-01 5,C36566E-01 -4.726475E-C1 5.36qE21E-01

8°541048E-C2 -4,6113S9E-0| -5.157C31E-01 ?.052118E-C1 -1.6G7524E-O|

-1.642548E-01 5,862682E-01 2.684_78E-01 2.053506E-02 5.46831_E-01

-4.23_538E-01 3.052875E-02 1.888815E-01 3.801119E-01 -5.620916E-01

S,OOCOOOE-U| 8.O00COOE-O|

AMN2 VECTOR

8.OOO000E-OI 5,OOUOOOE-01

],COCOOOE-OI 8°OOUOOOE-OI 3.000000E-OI G.gg?gg6E-02

_,q_99_6E-O2 5,000000E-01 b.OOOO_OE-01 6.O00000E-OI
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Section 7

CONCLUSIONS

The results obtained with the simultaneous representation

procedure applied to simplified cases of black and white cloud photos

are very encouraging for the goal of automatic pattern classification.

Also, considerable reduction in the required quantity of data was

proven, because good classification results were demonstrated using a
low number of components or dimensions (3 to 6). The classification

results using only those two eigenvectors corresponding to the largest
and the smallest eigenvalues were essentially as good for the samples
tested as when the complete set of eigenvectors was used. This con-

firms the expectation that considerable reduction in the amount of data,

or in the length of the calculations for the decision process, can be

achieved due to the optimum class discrimination properties of extreme

eigenvalues and eigenvectors.

The decision procedure for cloud classification performed

successfully, even with limitations such as use of a fixed size sampling

square, bilevel (0, i) data rather than 32 gray levels, and use of rela-

tively few (3 to 6) dimensions for each sample. The work has demon-

strated that the simultaneous eigenvalues and eigenvectors can be quickly

computed (ll seconds for 6 x 6 matrices, including redundant checking

of the inverse) as also can the calculations of the decision function and

class choice for each 6-dimensional sample or unknown vector (i. 4 sec-

onds per sample). These times are for the IBM 360 Model 40 computer

with on-line input-output. Before this study, it was not certain whether

the eigenvalues obtained on cloud intensity data would actually be widely

separated from unity, corresponding to distinctive differences in vari-

ances for the two classes, with associated possibilities for classification

using only extreme eigenvalues and eigenvectors. The results show that

Page 87



in fact such separated eigenvalues are found for the cloud data (in favor-

able cases such extreme eigenvalues are found as kl = ?_i. 9 and k6 =

•0484, see Table 19).

The eigenvector and decision procedure have been mechanized

into computer programs and checked out for the simplified examples,

and are available for determining the best sequential procedure with the

complete 150 x 150 element digitized photos available on magnetic tape•

The results obtained show only moderate changes in the covariance

matrices and eigenvectors when the sample size used for estimating

the matrices was increased from 5 to i0. Also the class decisions

were essentially unchanged. This is very encouraging, inasmuch as well

defined, representative matrix values may thus be expected with rela-

tively small sample sizes, such as 50 - essentially "complete learning"

has been produced when the matrix elements no longer change.

A study of the results shows that a primary cause of wrong

classification arose because the same sample or measurement vector

was observed as a known input both for one of the CUMULUS CELLS

samples, and for a STRATOCUMULUS STREETS STRAIGHT sample•

Such a sample vector must have an apparent classification error for

one of the two classes in which it occurs. This error source should

diminish with use of more components or dimensions for the measure-

ment vectors, and with use of 32 gray level intensities rather than the

bilevel (0, i) values for the simplified examples, especially if the

over-all intensity level differs appreciably between cloud types•

A second source of classification error was that the input

photos were not completely homogeneous, but sometime s contained sub-

areas with differing cloud classes within one photo frame. Therefore,

purer class statistics and sharper class discrimination may prove pos-

sible by careful selection of the known samples used to establish the co-

variance matrices for each class. On the other hand, the results also

show an advantage of the procedure (if sufficient initial class homogeneity

is achieved in defining the known samples), because each local sub-area
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tested is assigned into one or another class, enabling a heterogeneous

unknown sample photo to have its member classes identified, along

with relative frequency of occurrence of each class.
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Section 8

NEW TECHNOLOGY

The simultaneous reduction, maximum eigenvalue theory

developed by Prof. A. V. Balakrishnan, had not been applied before

to experimental cases. Its applicability to the cloud pattern recogni-

tion problem as demonstrated in Section 6, is therefore an innovation.

Space-General's concept of using the gradient direction for

local high gradient regions as a local reference, to provide a unique
local autocorrelation or autocovariance function, is a basic, unique

proprietary innovation.
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Section l0

GL OSSAR Y

A

aoo

lj

a k

E (Xi, Xj, Xk, X e

Expected variance value for process 1 component x k

General element of class or pattern covariance matrix

Fourier-type expansion coefficient for general intensity

vector, using both simulated representation eigenvector

Expected or mean value

) - Expected value of fourth mixed moment

E
n

Small arbitrary value in steepest descent optimization

2g (X) Decision function evaluated for sample X

gl (x) Discriminant function evaluated for sample X under
hypothesis class I

gz (x) Discriminant function evaluated for sample X under
hypothesis class 2

k12 Constant decision function terms from ratio of a priori

probabilities and ratio of covariance matrix determinants for
classes I and 2

M Number of samples of a cloud class used to estimate the

class properties

M 1

M 2

N

Pattern class 1 vector of local mean intensities

Pattern class 2 vector of local mean intensities

Number of terms used in a truncated eigenvector

representation of cloud pattern intensities

OP- i Scaling option for photo preprocessing

OP-2 Filtering option for photo preprocessing

OP-3 Averaging option for photo preprocessing
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Pl

PZ

R

R 1

-I
R

I

R 2

-i

R 2

S

Tr

t

u12

Var

Var
1

Var 2

W

Wij' Wkl

W
n

W°

1

X

X

A priori probability of occurrence of pattern class 1

A priori probability of occurrence of pattern class Z

Covariance matrix, expected value of products of pairs of

intensity values after subtracting the local means

Covariance matrix for class 1 patterns (here, for

CUMULUS CELLS)

Inverse of class 1 covariance matrix

Covariance matrix for class 2 patterns (here, for STRATO-

CUMULUS STREETS STRAIGHT)

Inverse of class 2 covariance matrix

Hyperplane form in a decision method using linear threshold
elements

Matrix trace, sum of diagonal elements

Threshold level, constant term in decision function for

pattern classification

Decision surface, boundary between class 1 and class 2

Variance, second moment from the mean

Variance for class 1 process

Variance for class 2 process

Decision process matrix; difference of the two inverse

covariance matrices for decision between two processes

Elements of the decision matrix W

nth iteration estimate of optimum decision matrix

Weights determined for best linear threshold element
decision method

Sample from pattern class 1

Measurement vector or set of cloud photo intensities for

pattern class 1 sample
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X i,

x i,

x
k

Y

Y

Yi'

b

Yk

Z

zk

%

B]

{k

J

kk ,

X.

J

x
rn

Yk

kI

j

Local intensity values for grid elements or cells i, ]

for pattern class 1 sample

Fourier-type expansion coefficients using simultaneous

eigenvector repre sentation for cloud intensities

Average or mean class 1 expansion coefficient for kth

eigenvector

Sample from pattern class 2

measurement vector or set of cloud photo intensities for

pattern class 2 sample

Fourier-type expansion coefficients for a pattern class 2

using a simultaneous eigenvector representation for cloud
intensities

Average or mean class 2 expansion coefficient forkth

eigenvector

Intensity measurements of unknown sample

Fourier-type expansion coefficient using kth simultaneous

eigenvector for unknown sample Z

Transposed vector

Z
Variance for component Yk of pattern class i, Yk

Z
Variance for component X. of pattern class i, x.

J J

Fourier-type expansion coefficient for conventional

Karhunen- Loeve repr e sentation of a single proce ss or pattern
class.

Eigenvalue for jth components, equal to ratio of variances of

xZ/ 2
jth components j yj for two cloud pattern classes

Eigenvalues for kth, ith uncorrelated components

Vector of local intensity means for cells in sampling
window

Local mean intensity values for grid elements or cells, i, j

of the eigenvalue kk; ratio of variances ykZ/Xk ZReciprocal
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Z l

-i

E 1

-i

Dlk

Z 2

1j

el' Cj'

@k' @i

diagonal covariance matrix for variances of uncorrelated

expansion coefficients x k for pattern class 1

Inverse of uncorrelated class 1 covariance matrix

kth element of inverse class 1 covariance matrix for

uncorrelated expansion coefficients

kth element of inverse class 2 covariance matrix for

uncorrelated expansion coefficients

Diagonal covariance matrix for variances of pattern class 2

uncorrelated expansion coefficients Yk

Inverse of uncorrelated class 2 covariance matrix

Element of original, correlated covariance matrix of cloud

photo intensities

Eigenvectors used to simultaneously represent intensity

patterns for two cloud classes

Eigenvectors in conventional Karhunen-Loeve representa-

tion for a single process or pattern class
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Appendix I

FORMULATION OF THE DISCRIMINANT FUNCTIONS
FOR DECISION

The foundation of the pattern classification method by deci-

sion theory is explained in this appendix. The method used to obtain

discriminant functions useful in distinguishing between several pattern

classes is based on Bayesian decision theory. As explained in Refer-

ence (i), statistical decision theory can be used as a means to estab-

lish the discriminant function when the pattern statistics follow known

probability functions. Let p(X/i) denote the probability that a sample

X (set of measurements) would be observed in sampling from pattern

Class i. Let p(1) be the a priori probability of occurrence of mem-

bers of pattern Class i, and p(X) the probability that X occurs regard-

less of its category (the marginal distribution of X, in statistical

nomenclature). Then Bayes' rule gives the probability that an observed

sample X came from the Class 1 pattern or process as

p(i/X) - p(X/l) p(1)
p(X) (i)

A similar expression with 2 replacing 1 holds for the probability p(Z/X)

that the sample X was obtained from the Class g pattern or process.

Then if p(i/X) is larger than p(Z/X), the better choice or decision is

that )f belongs to the Class 1 patterns, since the observed sample gives

higher probability to this choice. Rather than working with the products

of Equation (i), the natural logarithms of the terms can be used, giving

discrirninant functions gl(X) = In p(i/X) and g2(X) = in p(Z/X). Also,

the common term - in p(X) can be omitted in comparing the magnitude

of gl and g2 ' Again, the highest value of g(X) corresponds to the

most probable choice of underlying pattern class to yield the observed

sample X.
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In order to evaluate the resulting discriminant functions,

some model or expression must be used for the probability functions

p(X/l) and p(X/2). An important particular example of a model for

the pattern classes which can be readily handled, and may be approxi-
mately valid for distribution of cloud pattern intensities, is the multi-

variate normal distribution. This probability distribution for Class 1

is described completely by the multidimensional mean vector M 1 and
the covariance matrix_l. Thus if the sample measurement Xhas d

components, the mean M 1 is a dx 1 column vector, and _i is a d x d
matrix whose diagonal elements give the variances for the d compo-
nents, while the off-diagonal elements measure the cross-correlations.

The first two moments, the mean and the variance, are basic for dis-

tributions, and can be more accurately estimated with limited sample

sizes than higher moments. A roughly Gaussian or normal distribution

is a useful model when the underlying distribution is not strongly

skewed. Another reason for trying the adequacy of cloud pattern classi-

fication as suming underlying multivariate normal (Gaussian) distribu-

tions is that the procedure of averaging together intensities into overall

values for each small local cell tends to bring the original distribution

towards a normal distribution, according to the central limit theorem

of probability theory. The favorable pattern identification results in

Section 6.3, support the use of this model for the decision process.

As shown on p. 55 of Reference (i), use of the normal prob-

ability distributions yields the two discriminant functions:

gl(X) =lnp 1 --zln IEll - (X-Mt)""E 1

1 1 [ -I(x_M2) ]gz(X) = in P2 - -Z in IE21 - _ (X-M2)':-'Z2 (3)

Here Pl is the a priori probability of occurrence of pattern class 1

while P2 is the a prior_____iprobability (or frequency) that pattern class 2

occurs. Natural logarithms are meant by In. The asterisk means

transpose (of a column vector into a row vector), and l_liis the abso-

lute value of the determinant for covariance matrix _i" Since the
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conclusion is made that a sample vector X should be classified into

pattern class 1 whenever gl(X) > gz(X), we may define a decision sur-

face between the two classes as

uI2 = g(X) = gl(X) - ga(X) (4)

and X will be assigned to pattern class i whenever g(X)is positive,

because then gl(X) is larger than g2(X). The form of Equations (2)

and (3) shows that the important quantity is the deviation of a sample

vector X away from the mean M 1 of class i, or M 2 for class 2.

Subtraction "of Equation (3) from Equation (2) yields for Equa-

tion (4):

where

i[ ]u12 = g(X) = - _ (X-M1);:" E l I(X-M I) (5)

1 [ (X_M2)"+ _ (X-Mz)"s E2 -1 + in k12

P 1 1 ]E 2 I

in ki2 = in -- + In • (6)
P2 7

If the means M I and M 2 are regarded as having been first removed,

then the decision surface u12 or g(X) of Equation (5) becomes a quad-

ratic form plus a constant:

1 X;:" (_1 -1 -1 (7)u12 = g(X) = - _ - E2 ) X + in k12 .

Thus whenever the quadratic form X ;:=(El -I - E2 I)X

exceeds the threshold value 2 in k12, u12 or g(X) is negative so that

X is put in pattern class 2; while if the quadratic form is smaller than

2 in klz, then a sample X is put in pattern class Z. Thus decision is

made based on comparing the quantity X::'WX to the threshold level t,

where

t= 2 in k = 2 in __Pl +ln II_Z

12 P2 7Yi-Y "
(8)
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For the case assumed of two Gaussian processes, the theory

in Reference [i) shows that the optimum choice of the matrix W is

-i -i
W = _I - _2 (9)

In general, evaluation of the decision matrix W and the dis-

criminant functions gl(X) and g2(X) requires use of the full set of ori-

ginal measurements or components. The covariance matrices _i and

_2 and their inverses would have to be recalculated for use of any sub-
set, because of correlation or dependence of the components. However,

the theory developed by Balakrishnan, Reference (3) and Appendix II,

transforms the original measurements to a new set of coordinates (an

eigenvector basis set). The components in these new coordinates be-
come uncorrelated both for the Class 1 or X members, and simultane-

ously for the Class 2 or Y members. The calculations are considerably

simplified, because the uncorrelated components result in diagonal co-

variance matrices _i and _2 when the simultaneous representation
eigenvectors are used. The most important advantage is that any spe-

cified components can be readily omitted, because zero correlation for

Gaussian processes ensures independence, of the components, see p.

59 of Reference (4).

The uncorrelation thus allows examination of the adequacy

of pattern classification for use of just a small subset of independent

representation coefficients when the eigenvectors are used as coordi-

nates for two pattern classes. In particular, advantage can be taken

of those components which result in large differences between the

class 1 and the class 2 variances, since large variance differences aid

in giving sharp class discrimination. This benefit comes from the

quadratic term X':_(_I-l - _2 I)X of Equation (7) above evaluated for
typical Class 1 members (large X values if the Class 1 component has

a large variance), as compared to its magnitude for typical Class 2
member s.
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The theory in Appendix II shows that the simultaneous eigen-

value kk for any joint representation eigenvector equals the ratio of the
variance for Class 1 (for that component) to the variance for Class 2..

Therefore, use of those eigenvalues farthest from unity should aid in

pattern discrimination due to large differences in the component vari-

ances. In particular, the largest eigenvalue, or few largest eigen-

values, or the largest and the smallest eigenvalue, should all give good

decision accuracy, provided they are much larger or much smaller

than unity. The following treatment shows the simplified expressions

which result for the decision function g(X) of Equations (5) and (7) by

use of one or several of the most extreme eigenvalues and correspond-

ing eigenvector s.

Denoting the average covariance matrix for measurements X

from pattern class 1 as R 1 and similarily R 2 for class Z then when just

the largest simultaneous eigenvalue kk and eigenvector _k are used, as

explained in Reference (2),

mated as

a sample vector from process l is approxi-

X = Xk_ k. (i0)

Under Hypothesis 1 that the unknown pattern belongs to pattern class I,

the component x k has zero mean (deviations from the mean have been

used), but (one-dimensional) variance

E [XkZ] : ,], (ii)

while under Hypothesis 2 that it belongs to pattern class 2, it has the

[,-]variance E Yk for pattern class 2, reiated to the variance for pattern

class 1 by the simultaneous eigenvalue kk,

X k -

so that (12)

E
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Here we calculate the component Xk, for a sample vector X,
by Equation (i0) as

(X,* R 1 Ck ) (X*, kkRzCk) (X*, RzCk)
= = (13)x k = ,

(_k*' R1 Ck ) (¢k' XkR2¢k) (¢k*' R2¢k)

Under Hypothesis i, the (one-dimensional) covariance matrix _i of x k

is given by Equation (ii), with inverse _i -I = i, while under Hypothe-

sis Z, we have a covariance matrix_2 = _k' Equation (IZ), with
-i kk

_Z =_ . Under the assumption that both processes are Gaussian,

the optimum choice of the (one-dimensional) matrix W is given by

Equation (9) as

-i -i 1 Xk
= - (14)

W 2_1 - _2 _

and the quadratic test form is calculated as

Xk WXk : (¢k*' RI% )z _ (15)

The threshold level t from Equation (8) is

Pl d_
t = 2 in k12 = 2 in -- + in )'k (16)

Pz -_-

which reduces to -in Xk

pattern class 2 are used,

in case equal numbers of pattern class 1 and
1

so that Pl = P2 = _"

The decision surface of Equation (7) is then

2u12 = 2g(X) = -x k Wx k -in Xk' (17)

and an unknown sample is put into pattern class 1 whenever the calcu-

lated value of g(X) turns out positive.

Since ¢k and RI¢k are fixed for a given sample covariance

matrix R 1 and the largest eigenvalue k k, the denominator of Equation
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(15) is constant and may be put into the threshold term,

known sample is put into pattern class 1 whenever

(x*, R 1

because then g (X) of Equation (17) will be positive.

so that an un-

2
(18)

If the next-largest eigenvalue kj is also found by the simul-

taneous diagonalization, maximum eigenvalue procedure (under the

constraint that the resulting eigenvector _. is maintained orthogonal
I

to the first
eigenvector _k in the sense (_;_ Rl_k) = 0), we know from

the theory that the components x k and x. will be uncorrelated. TheJ

component x. will also have zero mean and for pattern class 1 it has
3

variance say _,

E j = 13, (19)

while in pattern class 2 the variance is again proportional,

E L Jryj2] : A (20)
x3

Thus considering the two-dimensional vector of components (Xk, xj),

for pattern class i, its covariance matrix is diagonal (zero correlation)

while for pattern class 2, the covariance matrix is also diagonal

(21)

J_- 0

_2 = I Xk (22)

0 -_
x3

Under the assumption of Gaussian distributions in the two cases, we

have the same decision surface form as in Equation (7), and again an

unknown sample X is put into pattern class 1 whenever the quadratic

form X _'WX is less than the threshold t of Equation (8), where W for
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-I -I
Gaussian processes is the difference of the inverses E1 and E2 of
Equations (21) and (22), see Equation (9). This may be extended to

more components (more dimensions) in the same manner, assuming

Gaussian processes. Another possibility is to also consider the mini-

mum eigenvalue kin, whose eigenvector should be most similar to pat-
tern 2 and dissimilar to pattern I, and include this to help sharpen the
decision process.

It was thought most important to determine the adequacy of

cloud pattern recognition first using the multivariate normal models

for each class, because of the simplicity of the resulting expressions,

and the justification for approximate validity of normal distributions

many pattern-classification situations, see p. 50 of Reference (i).
Also, an appreciable number of samples would be necessary to estab-

lish the values of higher moments beyond the means and variances

which characterize Gaussian processes. The following discusses more

general approaches which could be used, though with considerable

greater computational complexity, to remove limitations from the as-

sumption of normality. This more complex procedure did not appear
justified for relatively limited number of samples, and would not be

considered unless poor classifications resulted for the simpler

Gaussian assumptions.

If the assumption is abandoned that the two pattern classes

or processes are both multivariate normal, differing in their variances,

we are still sure from the theory that separate components xk and x..J
will still be uncorrelated (where xk is calculated using _5k in Equation

(13)). Thus the covariance matrices E1 andEz of the components will
still be diagonal. In this case, however, we do not have the explicit

representation of the optimum decision matrix W in terms ore l-I and
-i

E2 , Equation (9), because this depended upon having normal
distributions.

The essential approach to determining the optimum decision

matrix W is indicated by Balakrishnan in References (2) and (3). Using

subscript 1 to signify process or Hypothesis 1 (pattern class i), and 2
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for the other class, the optimum W is such as to maximize the signal-
to-noise ratio

where

2
S [ECX*WX)I - E(X%X)2 ]
-- = (23)

N Var (X*WX) 1 + Var (X*WX)2

2

* * 2 _ [E (X*WX)I 24)Var (X WX)l = E (X WX)I ] (

S
Maximizing the _ ratio of Equation (23) is equivalent to minimizing the

denominator for fixed value of the numerator, as in Reference (3).

The numerator may be expressed in terms of the matrix trace as

Tr(WRI) _ Tr(WR2)] 2 = [TrW(RI-R2)] 2 (25)

Similarly the second term of the variance expression of Equation (24)

is

Z

[E(x*wx)I] = (TrWR )2 (26)

If the process were Gaussian, then the first term in the sample vari-

ance could be reduced from the fourth mixed moment form

_D_ WijWkl E(XiXjXkX _
(27)

down to sums of products of second moments, as stated in Reference

(3), by using the result at the top ofp. 168 of Reference (4), and there-

by the form of the variances in the denominator could be simplified.

This would not be possible for non-Gaussian processes.

In the general non-Gaussian case, numerical estimates would

be available of the fourth mixed moment expressions E(XiXjXkX ) from

the known sample vectors for each pattern class. The desired minimi-

zation of the denominator of Equation (23) subject to the constraint that

the numerator has a fixed value, then becomes a search for the elements
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Wij of the decision matrix W which cause the gradient with respect to

W to vanish for the expression

f(W) = Var (X WX)I + Var (X WX)2 - k TrW(RI-R2),

where the constraint has been added in as a fixed value of TrW(R 1

by use of a Lagrange parameter k (any additive constant vanishes

when the gradient with respect to W is taken). If three eigenvalues or

components (Xk, Xj,Xm) were considered, the symmetric 3x3 matrix

W would have 6 independent elements to be found.

(28)

-R z)

To handle this more involved case, a special computing pro-

cedure would have to be developed. Following the method of Reference

(3) for the conventional (Gaussian) case, it may be possible to obtain W

by a steepest descent iteration on

r

Wn+ 1 = Wn + En LVarl + Var2 - TrW(RI-R2)J (29}

(S/N is independent of any multiplicative factor of W).

Unless a large number of sample photos of each class are

available, it may not be possible to accurately estimate the fourth

moments and be sure that this moment differs significantly from the

Gaussian results. In view of this, and of the larger complexity in es-

timating the optimum decision matrix W for non-Gaussian processes,

it appears that most progress can be made keeping the Gaussian model

but investigating the improvement in the decision process through addi-

tion of other eigenfunctions (for simultaneous eigenvalues lower than

the maximum kk ). This increases the dimensionality of the covariance

matrices El and _2 of Equations (21) and (22), but still uses the simple

expression for W of Equation (9) which is completely valid for Gaussian

processes, and may be difficult to improve upon unless many sample

photos were available (to be sure of significant difference from the

Gaussianmodels). The procedure can be applied to more than two pat-

tern classes by considering pairs of the dichotomies, or several deci-

sion surfaces g(X).
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Good discrimination between cloud classes was demonstra-

ted in Section 6.3 even on bilevel photo intensities, which are at best a

binary quantization of values which might be observed for Gaussian

processes. The qualitative importance of components with largely dif-

ferent variances also held for this bilevel data. The results support
the use of the simple decision function g(X) for Gaussian processes of

Equations (5) and (7), rather than the gradient or steepest descent de-

termination of a decision matrix W for arbitrary probability models.

The influence of initial correlation of pattern components for the origi-

nal coordinates reflects through the original correlated covariance

matrices into the form of the joint eigenvectors, so that the dependence

effect is kept in this manner, but the new Fournier-type expansion

coefficients (xk and yk) have been made uncorrelated by the transforma-

tion to joint eigenvector coordinates.
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Appendix II

THEORY FOR DECISION USING SIMULTANEOUS REDUCTION
OF COVARIANCE MATRICES

This appendix explains the simultaneous representation of
two different patterns or processes by a common set of basis vectors.

This is an important aid in reducing the volume of data which must be

handled to give good accuracy of pattern recognition. Although there

are initially just as many eigenvectors as there were dimensions or

coordinates for the original patterns, the simultaneous reduction

procedure is shown to produce new "coordinates" (the simultaneous

eigenvectors) which are uncorrelated or independent for both of the

two patterns. At this point, those components or eigenvectors can

be eliminated which are not sharply distinctive between different pat-

terns or classes, thus reducing the eigenvectors and also the terms

in the class decision function. Such eigenvectors give the best or

sharpest classification results possible for a given number of re-
tained terms.

The simultaneous representation theory in this appendix

shows that a judgment about the importance of eigenvector _k in dis-
crimination between patterns may be made from the magnitude of the

eigenvalue kk associated with the eigenvector. The eigenvalue k.

equals the_ratio of the average or expected variance ra_1o k /Yk '
2

where x k is the variance (from any mean value) of the class l

expansion or representation coefficients x k for that eigenvector term,
2.

while Yk is the analogous component variance for the class 2 pattern.

Thus if kk is much larger than unity, or much smaller than unity, the

two classes differ greatly for this component or expansion coefficient,

and use of the corresponding eigenvector _k will give distinctive class

separation. (The theory shows that all eigenvalues kk are real and

non-negative. ) Some reduction in the importance of these largest
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eigenvalues and eigenvectors will occur if there are considerable

differences in the mean vectors M 1 and M 2 for the two pattern classes,
because then enough eigenvectors must be used to adequately approxi-

mate the decision function terms due to differing means, as well as

those for differing variances, see Equation (5) of Appendix I. Many

conventional decision procedures have been based on linear differences

in patterns (hyperplane separation), but the simultaneous representation

procedure also use quadratic or second-order differences for optimum

pattern recognition.

The results in Appendix I show that a decision function with

both linear and quadratic terms is optimum for choosing between two

Gaussian processes with differing means and covariances. Reasons

were given in Appendix I why this form of decision function might be
useful even if the initial data are not strictly Gaussian, and the results

on the examples of Section 6. 3 confirm this.

The simultaneous representation procedure can be applied

either when the initial data are local (possibly averaged) intensity

values, or local gradients. In either case, each photo or collection of

measurements can be represented as a vector of p components, where

p = mxm for a grid size mxm:

_X = (Xl, X2, , Xp) (1)

(For the study of Section 6, the initial number of components was p=25,

corresponding to a 5 x 5 grid used on the samples of each local region

of the photos. ) The values XI, etc., are real if intensities are used

directly; or complex to carry two values in orthogonal planar directions

if gradients are used.

The theory developed in Refs. (2) and (3) and discussed

under I above shows an optimum decision can be made as to whether

a measurement vector X should be classified in (Gaussian) pattern 1

with specified mean u I = (_I' _Z .... , _p) and covariance matrix RI;
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or in (Gaussian) pattern 2 with mean _2 and covariance matrix R 2.

The decision is made after substituting the measurement set X into

a decision function UI2,

- -%2 - - I l

1 * - 1 * -
- _ _l Rll _'2 + 2 P2 R21 ISl + log kl2.

Here X* is the (conjugate) transpose of the vector X__j,R -l the inverse

of the covariance matrix RI, and log k12 depends on th I relative fre-

quencies or probabilities of occurrences of patterns l and 2; log kl2 =

0 for equal a priori probabilities. If the value UI2 turns out to be

positive when the measured values X of Eqn. (i) are substituted into

Eqn. (2), the best (most probable) decision is that X corresponded

to pattern i; a negative value UI2 results in choice of pattern 2. This

quadric decision function is discussed in Ref. (i), pp. 27-28. The

theory has been developed for any arbitrary number m___of categories

or patterns, see Ref. (3), though the method proceeds by considera-

tion of only two patterns at any particular step. The quadratic term

is seen to contain a decision matrix W,

(2)

-i R_IW = R 1 - (3)

Next, under certain conditions on R 1 and R 2, it is possible

to represent sample measurement vectors X corresponding to pattern

or process l (with covariance matrix R1)and vectors Y__corresponding

to pattern 2 (and covariance matrix R2) both in terms of a common

set of orthogonal or basis expansion functions Ck (a coordinate system

which is a normal coordinate system for both processes together):

P

__ = Z Xk¢ k (4)
1

P

___ = 7_ YkCk. (5)
1
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The importance of this, as explained in Ref. (i), is that in favorable

cases it may be possible to obtain a good representation of the differ-

ent patterns by use of just a few of the basis functions _k" Rather
than using the initial orthogonal basis vectors such as (1,0, 0), (0, 1,0),

and (0, 0, i) for a three-dimensional example, Case 1 treated in Section 6

6. 2, it was shown that sharper pattern discriminatiQn resulted by use

of the three basis vectors shown in Tables 7 and 8 of Section 6, for

example, _l = (.530, .747, -.400). The set of eigenvectors is still

complete in the sense that any initial vectors X or Y can be exactly

represented by use of all the eigenvectors, but advantages appear

when only a truncated set of eigenvectors is used, because those

eigenvectors can be retained which retain the greatest distinctive

differences for the two classes.

These expansion functions serve a useful role similar to

that of the Karhunen-Zoeve type-basis functions discussed in Ref. (7),

pp. 96-98 and pp. 373-374, or in Ref. (8), pp. 12-15. There are

differences, however, because the Karhunen type functions _k satisfy

the orthogonality condition (where _:_denotes conjugate transpose, and

parenthesis means inner product):

(_, _j) = 0 (Karhunen) (6)

and thus the vector components in the Karhunen series 3

@O

x ,. z *k, (7)
1

may be found as

= (x*, (8)

II-4



In contrast, if the joint or simultaneous representation functions Ck
are used as in Eqns. (4) and (5)# these satisfy a modified orthogonality
relation of the type

(¢j*,R1 ¢k) = 0 (9)

and also simultaneously

(¢j*,R2 ,k)--o (lO)

vhere R 1 is the eovarlance matrix for the "X" pattern samples, and R2 that

for the "Y" pattern. Now for these simultaneous basis functions _k' the

analogue of the Karhunen series expansion coefficient of Eqn. (8) is

(x*,_l *k)

_ ¢. . (11)
( k 'R1 *k)

In the conventional representation with the Karhunen func-

tions or eigenfunctions _k as in Eqns. (7) and (8), the objective is to

obtain a close representation of each pattern by use of a truncated

series with just a few terms N. The Karhunen functions _k enable

a "spectral decomposition" of the signal power (of X) to be made, see

p. 98 of Ref. (7). Similarly, the covariance matrix R 1 itself can be

represented in diagonal form in the Karhunen functions _k as

R1 = I_ _k_' (Karhunen) (12)

see Ref. (7), pp. 97, 37 4. If <_k_ is a normalized (as well as an

orthogonal) set, this representation shows that the closest truncated

series approximation to R 1 will result by choosing the N largest

eigenvalues kk and their corresponding eigenfunctions _k"

However, in the pattern recognition problem, we are not

interested in those basis functions having simultaneous large compon-

ents both for vectors X from pattern l (of Eqn. (4)) and Y from pattern
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2 (Eqn. (5)). These features would be the same for both patterns. In-

stead, we want the greatest contrast or dissimilarity to be extracted.

For this purpose, the simultaneous representation functions Ck' which
satisfy the modified orthogonality conditions of Eqns. (9) and (10), are

very advantageous when obtained by a maximization process or se-
quence, as next discussed.

We impose the requirements of simultaneous representation

of vectors X and Y from two different patterns or processes in terms

of a coordinate system Ck for both of the processes, together with
the condition that the expansion components are uncorrelated:

E _x. : 0 : E
t _ xj_j -Yi Yi J (13)

f

The basis functions Ck _' ' k -- i, 2 .... , p (for p - dimensional

vectors X , Y ) are linearly independent, but not orthogonal in the

sense of Eqn. (6), but rather in the more general sense of Eqns. (9)

and (I0). If the variables are Gaussian, uncorrelation implies inde-

pendence, see p. 9 of Ref. (8), and this independence is very desirable

since it permits use of a most-powerful likelihood ratio method for

decision between different possible patterns, see Ref. (8), pp. 59, 71.

The simultaneous expansions indicated in Eqns. (4) and (5)

can be obtained only under special conditions if R l and R 2 are infinite

dimensional covariance functions, Ref. (9), pp. 1-21 to 1-24. But we

shall always have the case of measuring a finite number of values at

grid points, where the vectors X and Y are p-dimensional, with just

p members in the set Ck For such a finite-dimensional case, the

simultaneous representation is always possible provided one at least

of the matrices R 1 and R 2 is non-singular, see pp. 1-19 and 1-20 of

Ref. (9).

The vectors X and Y of Equations (4) and (5) have any local

mean components subtracted, so that the class 1 or X pattern covari-

ance matrix R 1 has general element aij equal to the expected value of

the product of the ith and jth values, X.I Xj' and similarly R 2 has
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elements Y. Y.. In order that the eigenvector set Ck results in un-I j

correlated components on the average for both class 1 (X) and class 2

(Y), the necessary conditions as shown by Balakrishnan in Ref. (9)

are that simultaneously:

E Ix i xj] = (¢i*' R1 Cjl = 0 i_j (14)

[yi : I°/. R20j) : 0 c15 
Here _i is the transpose or row vector formed from the column

vector ¢i' and ( , ) denotes inner product. The above relations insure

that the components or expansion coefficients x. x etc. will be
i ' j'

uncorrelated on the average, although any particular sample set may

not exactly satisfy these conditions. Similarly, the expected value of

the variances of the components are found by:

E

E

[2]( )xi = ¢i*' R1 ¢i (16)

Yi = ¢i*' R2 ¢i (17)

where the eigenvectors are conveniently normalized to unity,

(_i ' _i ) = 1 . (18)

The transpose vector X* from Equation (4) is

P ;_.-

X* = r x. ¢i (19)-- 1
1

and its inner product with the vector R 1 ¢j is:

P , ,:._

(X* R 1 Cj) = Z x ((hi , RICj) = xj (_bj R 1 _bj) (20)
' 1 i '

because all the other terms vanish due to the uncorrelation relation of

Equation (14). This confirms Equation (ll). (If the coefficients x.
;,,. i

were complex, then the conjugate transpose x. would occur as in
1

Equation (13).)
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Introducing the representation of Equation (4) into the class

1 or X covariance matrix expression yields:

[(p )(p )]a 1 = E [xx*] = E z xkCk z xj ®j (21)
1 1

E L[X X*]j has general element a i_J = X.X..) Now(Here of theLlSe

1 j
uncorrelation relation of Equation (14) shows that the covariance

matrix R 1 is built up of a sum of individuai matrices, each one having

terms from only one eigenvector:

p [2] [2]R I = Z E x k Ck Ck = E x I ¢I ¢i
k=l

+ E x 2 ¢2 ¢2 + "'" + E Xp Cp Cp

(22)

If the first eigenvector has components

¢i : ¢1

l (3)¢1
J

* (i) (j)
then the general element of the matrix ¢1 ¢1 is ¢1 ¢1 (general,

non-diagonal matrix). The relation of Equation (22) is true on the

average, averaged over the class 1 samples, but does not in general

hold exactly for any particular sample set from class 1. The coeffi-

cients E''_xI2 ] , etc., are found from Equation (16) once the joint

eigenvector set ¢i has been determined.

(23)

Exactly the same decomposition or reduction into the same b

basic matrices _i¢" r8 1 , etc., results for the class 2 covariance matrix

R2, from its definition as R 2

Equation (5):

, , ] P

R 2 = E [YY j = E
k=l

.1._ ]= E Y Y , and the representation of

E k Ck Ck : E Yl ¢i ¢i

_- ° ° °

Cp Cp

(2.4)
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t ]
Indeed for

any arbitrary set of representation coefficients [ak ] ,

and corresponding general vector Z , where

P

Z = 7 ak @,-
k=l

(25)

the uncorrelation relations of Equations (14) and (15) show that:

(p ),(p )(z*,RIz) = z ak_k RI z ak_k
1 1

P 2 2
E ak E [Xk ]
1

(26)

1

(27)

P 2 [yk2 ]= F. ak E
1

The non-vanishing terms were reduced to variances ElXk ] or E

by use of Equations (16) and (17). We see that use of an eigenvector

set satisfying the uncorrelation relations of Equations (14) and (15)

demands that general quadratic forms for any arbitrary vector Z ,

(Z* R I Z) P P, = E E a.. z.z., (28)

i:l j=l 13 x 3

must be reducible to a sum-of-squares form, Equation (26), both for

the class 1 process (RI) and simultaneously for the class 2 process (R2).

Thus, the requirement is that both quadratic forms must be

capable of simultaneous reduction to sum-of-squares form. From

Refs. (9) and (Ii), this is always possible if one of R 1 or R 2 is non-

singular (both of same finite dimension p). If R 2 is non-singular,

the determinant

kR2ll : 0 (29)R 1
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is a polynominal of degree p, yielding p roots or eigenvalues X 1 ....

X The desired basis functions are the simultaneous or joint eigen-P

vectors corresponding to each Xk

R1 _k = Xk R2 Ck (30)

Multiplication of Equation (30) by Ck yields

(¢k ' R1 Ck ) = Xk (@k ' R2 @k ) (31)

or from the variance expressions of Equations (16) and (17):

_:'_ _ 2
(®k ' R1% E[Xk]

Xk = ,,,= - (32)

Covariance matrices R 1 and R 2 are symmetric and positive definite,

see p. 54 of Ref. (I0), so that >'k >--0. If instead Equation (30) is

pre-multiplied by _j , we demonstrate the desired uncorrelation

relations of Equations (14) and (15) for any eigenvectors satisfying the

eigenvalue equations, Equations (29 and 30):

(_j , R 1 Ck ) = Xk (¢j , R 2 @k )

' (¢j*(¢k ''_ , R 1 Cj)= Xj , R 2. _k )

(33)

where _j and ¢5k may be switched in the quadratic form type of Equa-

tion (28) with no alteration in its value. The last line of Equation (33)

results by pre-multiplying the eigenvalue equation for Cj ,

R 1 _j = Xj R 2 Cj , (34)

by the eigenvector _k

Hence, for Xj # Xk,

, • (¢j*,(¢j , R 1 _k ) = Xk (¢j , R Z _k ) = X.j R 2 Ck ) (35)
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which is only possible if
_',._ _,,.-

(¢j , R 1 _k ) = 0 = (_j , R 2 ¢)k) (36}

This verifies the joint or simultaneous uncorrelation, Equations (14)

and (15).

The term E x k may. be regarded as a measure of the

amount of energy r ,presentfor process 1 in the spectral term in Ck'

similarly E [yk 2] measures the process 2 energy component forand

the same portion of the spectra, so the condition of maximum Xk re-

suits in greatest contrast of the relative energies for one spectral

term, see Equation (32). If the N largest eigenvaiues Xk are found,

these and the associated Ck'S extract the greatest variance differences

between the two patterns or processes. Thus, the dimensionality of

the problem is greatly reduced when the contrasting variances yield

good discrimination.

If the expected value for process 1 of the component xk for

the most distinguishing eigenfunction _k is

r 2_ = A (37)
E ixk j

then from Eqn. (32),

The eigenvector Ck is chosen conveniently to satisfy Equation (18).

For this choice, the one-term approximation to the covariance matrix

IIl for process or pattern i is A of Eqn. (37), while R 2 is approxi-
A

mated by _ of Eqn. {38). If a measurement or vector X is chosen

from process i, for the case of decision between two Gaussian pro-

cesses (same mean but different variances), we may consider its com-

ponent x k of Eqn. {ii) as a Gaussianvariable. The decision function

UI2 of Eqn. (2) based on this most contrasting component then becomes

by use of Eqn. (ll).
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i ;:'_ - i - i

Ulz - 2 _ (RI - R2 )xk + inkl2

1 (X;:", R _k )2 ( 1 XkUI2 - 2 1 A A ) + in ki2

;:-" 2
(¢k' Ri Ck )

Hence the threshold between pattern 1 and pattern 2 is:

(39)

(40)

' R1 Ck A A = Z inklz (¢ , R 1

= const.

(41)

This dichotomy for choosing between 2 patterns can be

extended pairwise to choose the best one of m patterns. If the as-

sumption of Gaussian processes is not made, a threshold decision

_R 2 - lusing (X;i=R 1 Ck ) is still possible, but in place of (RII ) we use

a matrix W (of dimension equal to the number of eigenvectors #k

used - the number N of large eigenvalues taken), with the best choice

for W found by the maximum signal-to-noise ratio shown in Equation

(23) of Appendix I.
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Appendix III

SURVEY OF RELATED WORK

This Appendix presents a summary of various references

that were found to be noteworthy either for background information or

for direct application to the approach under study.

Earlier studies in cloud pattern recognition conducted, for

example, at Astropower, Reference (6), used adaptive training of a

perceptron. Only limited effectiveness of recognition was obtained,

when the machine was trained with equal numbers of patterns with and

without vortex structures. The limited effectiveness was attributed

to intermixing of the pattern classes caused partly by the inaccuracies

of the optical measuring procedure and partly by the complexity of the

patterns themselves. In this study, the use of local small areas was

chosen to contain significant information, as revealed by high magnitude

gradients. This selection reduced the intermixing of pattern classes,

and enabled detection of two different patterns in different regions of the

same large photo. The Astropower digitized vortex and non-vortex data

would be very useful for future application to the approach, if they can

be made available.

Extensive work has been done by Orton and Rosenfeld, Uni-

versity of Maryland, on developing computer procedures for application

to analysis of Tiros cloud cover pictures, see References (7) and (ii).

Some of these studies have measured the abilities of human interpreters

to analyze and describe cloud patterns in Tiros pictures, while computer

programs analogously have been designed to extract such picture descrip-

tions as sizes and shapes of connected regions; solid cloud, solid non-

cloud, and partially overcast or broken regions; degree of brokenness;

and frequency distribution of various size squares enclosed within a

closed region (cloud shape). From work performed at Budd Co., Refer-

ence (7), it was found that human interpreters could correctly classify
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such cloud cover types as solid, fibrous, reticulated, cellular, and

banded when seen through a relatively small window, and the classifi-

cation was not significantly affected by window shape. This is support

for trial of computer classification methods based on small windows

of square shape. Additional work at the Budd Co. , Reference (8),

showed that essentially the same correlation values resulted by using

every tenth point of the 118 x 118 element frame, as when the complete

data were used; this indicates that the original grid fineness was more

than adequate. The grid fineness for their Tiros VI frames was 234

picture element/line, 2.40 lines/picture, and a central 118 x 118 portion

of the frame was selected for the study of Reference (8).

A comprehensive system of cloud classification is given by

Conover in References (12.) and (13), see also References (14) and (15)

of works performed at AFCRL. For the present work, the initial ef-

forts are directed towards establishing the feasibility of the procedure

in distinguishing two main classes. Since the procedure works as a

dichotomy on pairs of classes, in principle it can be applied to make

the best decision for multiple classes whose means and covariances

are specified.

A variety of cloud patterns, including a number of vortices,

are presented by Widget of Aracon Geophysics Company, Reference (16),

with an extensive discussion of interpretation of the cloud types. This

reference is a valuable aid for detailed study of special cloud types.

The authors discuss polygonal cell formations, which were also observed

by Katz (hollow polygonal formations), and a few examples of these are

included on the Rand tape (Frames 51-56), designated as hollow polygonal

cells or crescents, using Conover's classification, Reference (12).

Similarly, important features are identified on a number of Tiros photos

in the bandwidth compression study of E. D. Jones, at Stanford Research

Institute (Reference (17)). Catalogues are available for geographical

areas covered by Tiros on given dates, together with notations about

prominent cloud types observed, from the U.S. Department of Commerce
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(References (18) and (20)). Tiros photographs of tropical cyclones

are available from the U.S. Weather Bureau (Reference (32).

A discussion of available techniques for finding "similar"
subsets in data is given by Ball in Reference (4). He discusses the

eigenvalue techniques used by Mattson and Dammann of IBM, Refer-
ence (21), and Cooper and Cooper, Reference (22), where clusters of

"similar" subsets are derived by finding the maximum eigenvalue of the
covariance matrix and splitting patterns on the basis of correlation

with the corresponding eigenvector. Ball comments that eigenvalue

techniques are the only non-iterative type of cluster-seeking technique,

but that relatively large number of samples may be required to accurately

estimate the elements of the covariance matrix, particularly as the

number of dimensions grows large. Results from Allais' work at the
Stanford Electronics Lab, Reference (5), show that the number of sam-

ples should be ten times the number of dimensions to obtain the ultimate

accuracy of prediction. However, Ball in Reference (4) comments that

with small sample sizes, simpler quantities can be estimated, or only

the largest eigenvector of the covariance matrix. This agrees with

Balakrishnan's expectation that good pattern discrimination may result

with the simultaneous reduction, maximum eigenvalue procedure even

when the elements of the covariance matrix are only roughly known. In

an example of spoken numeral recognition, excellent results were ob-

tained even though the sample size was not large compared to the dimen-
sions of the space.

The procedure for the present study is strongly similar to the

cluster separating technique of Mattson and Dammann, Reference (21),

who use the eigenvector corresponding to the largest eigenvalue. How-

ever, their study concentrated on use of linear threshold elements or
hyperplanes of the form

n

S : _ x.w.
i=l i i

where the w. are weights to be determined (the components of the eigen-
1

vector for the largest eigenvalue of the covariance matrix), and the n
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values (x l, . Xn) are used as a descriptor of the pattern. Also,
since the formulation of the simultaneous reduction procedure by

Balakrishnan ensures that Equation (2) holds so that different compo-

nents are uncorrelated (see AppendixII), it is simple to use more than

one of the high eigenvalues and corresponding eigenvectors to examine

the resulting improvement in classification accuracy. The procedure

for building up the discriminant functions for use of two or more eigen-
vectors is explained in Appendix I. The work of Mattson and Dammann,

which was designed to isolate clusters for use with linear threshold

systems, uses additional linear threshold units to separate multiple

classes, where an additional eigenvector for each maximum eigen-
value X is found for each added pattern class. Our method uses curved

(quadratic) decision surfaces between pairs, with the possibility of us-

ing several eigenvectors corresponding to the few largest eigenvalues

to increase discrimination between one pair of classes.

A guide to the number of samples which is desirable to ade-

quately estimate the elements of the covariance matrix is given by Ball

in Reference (4), quoting results of Allais, Reference (5). Allais shows

that given N samples, the estimation of a covariance matrix of dimen-

sion greater than N/10 usually increases the probability of error for

predictions based on that covariance matrix as compared with predic-

tions using a covariance matrix of fewer dimensions. Thus, if a 5 x 5

window size is used, to produce a 25-component vector, the resulting

25 x 25 covariance matrix would require l0 x 25 samples for best es-

timation of the covariance elements. Because of the optimal discrim-

inating properties of the simultaneous representation, maximum eigen-

value procedure, it has been concluded that favorable classification re-

sults may be obtainable with fewer samples than needed to estimate the

covariance elements well.

A concise treatment of optimum discriminant functions for

distinguishing different multivariate normal distributions is given on pp.

54-57 of Learning Machines by N. J. Nilsson, Reference (23), and shows

that the most general form of decision function uses quadratic terms in
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the components (x I . . , Xn) of the measured properties when the co-

variance matrices differ, as well as linear terms to account for differ-

ences in mean values. A more extended development with applications

is given by T. Marill in an IRE Transaction, Reference (14), and the

procedure is explained in Appendix I.

The work of Katz and Doyle of Rand, References (2) and (3),

discusses a number of possible data transformations to the basic inten-

sity data which aid in extracting invariant features. A primary trans-

formed quantity used by Katz and Doyle, References (2) and (3), is the

two-dimensional autocovariance function. In their work, this function

was calculated for picture frames with matrices about 145 x 145. The

feature-dependent properties of the autocovariance function should be

retained in large part, however, even when it is based on local square

windows of smaller size 5 x 5 or I0 x I0, especially if the significant

photo regions (high gradient magnitude) are used. One advantage of

the autocovariance function cited in References (2) and (3) is translation-

invariance. Well defined rows of bands of clouds in the original image

cause other peaks in the autocovariance function in addition to the

origin peak for perfect matching or zero shift. An example mentioned

in Reference (3) is that a picture composed of alternate black and white

stripe s of equal width would give an autocorrelation which remains

constant when displacements are made along the stripes, but alternates

regularly, between +i and -I when displacements are made perpendicu-

lar to the stripes. Even if no peaks are apparent other than that at the

origin, the autocovariance functions still contain information about the

relative size and spacing of the clouds. When the individual clouds and

their spacings are an appreciable fraction of the frame width, such as

i/5 or i/i0, which is seen to be the case for the samples used in the

Rand work, References (2) and (3), the displacements used in calcula-

ting the autocovariance function can also be of this size, reducing the

number of values as the square of the number of displacements. As

stated in References (2) and (3), the autocovariance function will con-

tribute useful information even for non-Gaussian processes, provided

the process is random and spatially homogeneous.
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Further pursuing the concept of parallel and equally spaced

rows of clouds leading to spatial regularities in the autocorrelation

function, Katz and Doyle showed that measures of relative elongation

or non-circularity, and preferred alignment directions, could be pro-

duced for their Stratocumulus Streets Straight patterns by calculation

of an equivalent ellipse of concentration for the autocorrelation two-

dimensional distribution of values. For these cloud street patterns,

it was found that the ellipse of concentration axis ratio (semi-minor

to semi-major axis) was about 0.2-0.45, while for the more circular

Cumulus Cells, the values found were 0.78 - 0.90. This index may

be regarded as a one-dimensional vector produced by a transformation

on the many autocorrelation values calculated.

Another method for determining a preferred direction is

mentioned in References (2) and (3) - use of the "path of minimum de-

correlation" concept. The directionality and elongation of the cloud

street pattern is seen in the sample Frame 63 shown in Figure 3 of

Section 5, from the digitized photos provided by Messrs. Katz and

Doyle.

Rotation-invariant features may be extracted from the two'-

dimensional autocovariance function by a spiral scan procedure, spiral-

ing out from the origin of the autocovariance function, see Reference

(2) and (3), and also (Z9). The resulting transformed scan function w(t)

where t is time or distance along the scan to a close approximation, is

only delayed or magnified when the input image (of intensities in a two-

dimensional region) is rotated or magnified. This transformation might

possibly be applied in later trials to the autocovariance function cal-

culated from the intensities. A spiral scan would be especially interest-

ing for vortex patterns, particularly with a method for locating vortex

origin in a local, gradient-oriented window.

Another type of measurement or feature studied by Katz and

Doyle and found to be significantly different for their two primary classes

of clouds, is based on the "creeping whiteness" or "edge burning" con-

cept of Blum, References (3) and (31). Starting with each white region
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(cloud) (defined by the cloud cover method, selecting intensities above

an average threshold for the picture regions with high gradient), the

cloud boundaries are allowed to expand outward along the normal at

constant speed in all directions, advancing only into areas not already

overrun. This is done in steps, and the percent of the total frame

covered by the expanded white or "cloud" is found. The results are
an indication of the spacing between clouds. For the Cumulus Cells,

which are more circular, the boundary can expand in all directions

for a while without being stopped by contact with a neighboring boundary
from another cumulus cloud, so that the percent of the frame covered

by whiteness builds up rapidly at first. The elongated Stratocumulus

Streets Straight yield boundaries which collide early in the direction of

elongation, and thereafter additional areais whitened by the expanding

boundaries mostly in the direction of small cloud width, resulting in a

growth curve of white area lower than for the Cumulus Cells, and with

an effective slope decrease when the closer boundaries (elongated direc-

tion) collide.

If "creeping blackness" is used instead, the black (non-cloud)

regions gradually expand into the white (cloud) regions, and stop when

the boundaries collide across the shortest dimension of the cloud, giving

a measure of the distances within clouds, rather than between clouds

as for "creeping whiteness.

For use of either of these creeping uniformities with a local

window, the percent of cloud cover within the window must not be high

initially, or else the more significant regions of change would be lost.

These measures are derived starting with the original intensities by a

black-white clipping or thresholding, so that again more information

may be contained in the original intensities and their autocovariance

function. Katz notes that higher statistical moments are enhanced after

applying the creeping blackness (blob) technique, so that our covariance-

distinguishing procedure might work better on a given number of measure-

ments produced by this method than for the same number of original

me a sur ement s.
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The digitized photo samples on the Rand magnetic tape used

in the study appear rather uniform in size, though there are some ex-

tremes as is seen best from the black and white "cloud cover" images

shown on pp. 53-76 of Reference (Z), or pp. 202-213 of Reference (3).

The frame areas for their original 66 samples were all roughly square,

i-I/2 inch on a side, chosen from the larger 5" x 7" (enlarged) film

negatives made from the Tiros I 35 mm film. Each transparency was

somewhat reduced or enlarged to bring it to a 0.75 x 0.75 inch field.

Nearly the same type samples would result if a constant frame size

were used. There was a visual preselection of the samples to include

some significant amount of clouds within each frame. For these reasons,

scaling and percent of cloud cover are roughly the same for these

samples, while wide differences in these variables can occur in the

original satellite photos. Limited sub-areas within each frame of the

selected Rand cloud samples can show appreciable scaling effects

though, as readily seen from the black and white "cloud cover" images

in References (2) or (3). Katz and Doyle have shown in References (2)

and (3) that a measure of cloud cover can be computed using a threshold

of average intensity over regions where the gradient is high, and clipping

to a black-white image on this threshold, then finding the fraction of pic-

ture bits that are white. They used the (scaled to 3Z gray scale and

smoothed) intensity data for each of their frames or samples to calcu-

late a histogram of fraction of the population for each of the 3Z intensity

levels, see the example on p. 77 of Reference (Z), or p. 214 of Refer-

ence (3). Mr. Yale Katz pointed out that a number of the Cumulus Cells

frames had a histogram peak near the large intensity end of the distribu-

tion (intensities near 32), while the Stratocumulus Streets Straight tail

off to very low percent of the population at large intensity levels, but a

high population peak near the low intensity end. Katz explained the

higher brightness of the (convective) cumulus clouds as high water con-

tent and resulting high reflectivity, while the (nonconvective) strato-

cumulus streets are not as reflective. (Reference 33).
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